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RESUMO

Epilepsia € considerada a mais importadtencaneurolbgica crénica a nivel mundial. Esta
afeta mais de 50 rtibes de pessoas de todas as idades, e dessa populagdo apenas 70% dos
casos saa@ontrolaveiscom farmacos antepiléticos. Dos restantes 30%, 1@#neficiamda
ressecacao cirlrgica da regido responsavel pela atividade epi&tasarestantes 20% nao
congguem controlaradequadamenteas suas crisefe entre as razdes que justificarbaixo
impacto da cirurgia ermantra-se o facto de se desconhecer, na maioria dos casfis;odesta
atividade elétrica anormal. Por isso, a detecao deste foco € importante pema o diagnostico

como para o controlo das crises.

O foco epiletogénico é um conceito tedrjomnsistindo nalescreve a regido cerebrglie é
necessario remover para deixar oethte livre de crisesEste é caracterizado por dois tipos de
atividade epiléptica a ictal e a interictal. A primeira diz respeit@tividade elétrica gerada
durante ascrisesepiléticase a segunda a atividadgeradaentre as crises. A primeira é
caracterizada uma intensa descarga elétrica que pode ter uma duracao até aligunssnla a
segunda forma de atividade epiletogéniéa normalmente mais breve no tempo e néo

associada a manifestagcbes comportamentitetaveis

Os métodos atualmente utilizados no did@gtico da epilepsidaseiamse quer na detecdo da
atividade ictal querdetecao @ atividadeinterictal. Estesncluem a tomografigor emissdo de
positrdes (PET, adinglésPositron Emission Tomographya tomografia computorizada de
emissdo de fotdo Unico (SPEC3,imglésSingle Photon Emission Computed Tomogramhy
magnetoencephalogfia (MEG), o eletroencefalogria (EEG), tanto de escalpe como
intracraniara, e, por fim, a combinacéo entre o EEG e a imagiofagisessonancia magnética
funcional (fMRI do inglésfunctional Magnetic R@nance Imaging Todas estasécnicas
possuemdiversaslimitacdes em termos de baixa resolucdo temporal (PEPECT) e espacial
(EEG, MEG)utilizacdo de radigdo ionizante (PET, SPECT), de caracter invdEEG
intracraniano), e, também, pelas dificuldade técnicas e financeiras ceavém da
implementacdo de equipamentdWEG, EEG/fMRI)De forma a ultrapassar algumas destas
dificuldades novos métodos de processamento de dadiesfMRIdo estado de repoustém

sido desenvolvido€stes tém em vista a detecdo de atividade epiletogéntesictal.

A partir de studos recentesem doentes com epilepsia do lobo temporal (TLE, do inglés
Temporal Lobe Epilepsipi elaboradaa hipétese de que o focepiletogénicoapresenta um

comportamento distinto do restante parénquima cerebral quer enmtes de perfiltemporal,



quer em termos da complexidade dos seus sidegendentes do nivel de oxigena¢do do sangue
BOLD (d inglésBlood Oxygen Level Dependedésignacdo dada aos sinais provenientes da
técnica fMRI)Em particulay diversos estudode EEG/fMRIsugeremque a atividade interictal
esta associada a picos transientess sinaiBOLD apresentando estegpor conseguinte, um
perfil temporalBOLD distinto da restante atividade cerebradicionalmente, estudagcentes
com EEG indicam que o teld epiletogénicoapresenta uma menor complexidade, em termos

de perfil temporal, que o parénquima saudavel

Com base nesthipoéteses, € possivel aplicar uma analise de agregacao tempedaiiginsional
(2dTCA, dingléshi-dimensional Temporal ClusteriAgalysi$ paraidentificarregides cerebrais
gue possuamum perfiltemporal semelhanteDesta analise espese que sejam encontrados
diversos conjuntos de regidesom perfis temporais distintoseventualmente incluindo os
potencids focos epiletogénicos No entanto,a aplicagdo desta técnidaoladamentendo é

suficiente paradentificarcom seguranca focoda atividadeepiletogénica

Para tal, uma avaliagdo da complexidade dos sinais BOLD correspondentes a essas mesmas
regides pode ser feita utilizandads abordagens: uma baseada no nive¢dopiado sinal e

outra baseada nas propriedades fractais do sinal. Relativam&memeira abordagem, o
método utilizado para avaliar a dindmica da complexidada analiseda entropiaa multiescala

(MSE, 0 inglés Multiscale Entropydesenvolvendouma variante modificada do algoritmo
original Este baseige no calculo da entropia do sinal BOLD ao losgganultiplas escalas
temporais.Na analise de sinais BOLD de origepiletogénicapostulase que o tecido pssua

uma complexidade menor que o restante tecido saudavel, possuindo, no geral, uma entropia

mais baixa.

Na segunda abordagem, o método utilizado para avaliar as correlagbes temporais de longo
alcance (LRTCpdnglésLong Range Temporal Correlatiposi as propriedades fractaidos

sinais BOLD é a analise de flutuagées remogo de tendéncia (DFA,dainglésDetrended
Fluctuation Analys)sEste métoddaseiase na andlise da awafinidade do proprio sinalsto

€, analisa as autmrrelacdes do sinal dongo das diversas escalas temporbis caso da analise

de sinais BOLD com origarpiletogénicgpostulaseque as LRTCs sejam mais fodesqueas
LRTCs para sinais BQlddecido saudavel. Isto porquaum sinal periédico, como é o caso da
atividade inerictal,é de esperar observamma autocorrelagdo maiato que num sinal com uma

periodicidade mais baixa.



Esta combinacdo metodologica tem como objetivo fornecer um biomarcador para a
identifica@o de tecidoepiletogénicoa fim de ajudar no diagnéstico,anmontorizagdo e no

tratamento da epilepsia.

A demonstracdo da aplicabilidade desta metodolamgaidentificacdo do foco epiletogénico
baseouse na andlise de tré&oentes cada um com um tipo diferente de epilepsia: epilepsia do
lobo temporal unilaterale bilaterale displasia cortical focdFCDE, do ingl&socal Cortical
Dysplasia EpilepsyEm todos osloentes foiidentificadauma regido cerebratujo sinal BOLD

possui um comportamento temporal distintogpncordantes com a informacao clinica.

A analse feita aodoentescom epilepsia do lobo temporatlentificou aorigem da atividade
epiléticabaseada naipbétesequeos sinais BOLD do tecidpiletogénicgpossuem umantropia
menor gle o restante parénquima cerebrah analise de conectividade funcelnaos focos
encontrados revelou correlagdes positivas e nagat conoutrasregidescerebrais associadas
guer a possiveisredes criadas pelo foco epiletogénico, quer a outras redes cereluas

normalmente aparecem em estudos fMRI de estado de repouso

Por outro lado, @ndlise feita ao doente com displasia cortical focal indicou como provavel foco
epiletogénico uma regido cerebral que ndo corresponde a informacéo clinica da lesao displasica.
No entanto, uma andlise da conectividade funcional da regi@omtrada pelo método indicou

que esta possui correlacdes fortes com a regido da I&#iéacto, as hipoteses postuladas neste
trabalho baseiarrse em estudos elaborados para pacientes com TLE, pelo que ainda ndo existe
uma assinatura de complexidade adsda aos sinais BOLD de origem em FCDE. Por
conseguinte, prop8ee como trabalho futuro, um estudo de uma amostra de doentes com FCDE

de modo a classificar os sinais BOLD das regifes cerebrais displasicas em termos da entropia
(MSE) e das LRTC (DFA).

Os resutados preliminares obtidos neste estudo abrem novas perspetivasgatiizacao de

dados fMRI o auxilio @ diagnéstico, monitorizagéo e tratamento da epilepgiancipalmente

na avaliagdo pre€irdrgica.No entanto, existem alguns limites associadosetodologia que
precisam ser melhorado® primero diz respeito ao factoab sinais BOL¥Zariarem consoante

os individuos estudadgsas zonas cerebrais e as condicbes dos tecidos cerebrais: se séo
saudaveis ou patolégicos. Ou seja, é expectavel havieacda da frequéncia, amplitude e forma
destes sinais. Ainda, h& estudos que demonstram que a atividade interictal pode produzir tanto
um aumento como um decréscimo da magnitude do sinal BOLD, ou até nao ter efeito na mesma.
Resumindo, cada caso de epilepg Unico e condicionado pelos fatores descritos acima e,

portanto, assumir uma resposta homogénpara todos eles torna restrita a aplicabilidade deste



método. Por conseguinte, o método deve ser otimizado para cada individuo ou grupo de

individuos.

Concliindo, tanto quanto me é dado a conhecer, este trabdthia primeiro a combinar uma
andlise de agregacao tempord¢ regides cerebrais com arélise dacomplexidadedessas
mesmas regidestilizando dados do estado de repouso de ressonancia magnéticafiahc
Alémda contribuicdo destdrabalhorelativamente a sua aplicagdo a epilepsia, a metodologia
desenvolvida é igualmente valida para ser aplicada ao estudo da dindmica dos sinais BOLD no
geral, estudando, por exemplo, redes neuronais de estado deusgpemindividuossaudaveis

em termos do seu comportamento temporal e a nivel da sua complexidade.

PALAVRASHAVE

Epilepsia; focoepiletogénico imagiologia por ressonancia magnética funcioraialise de

agregaéio temporaj analise de complexidade
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ABSTRACT

Epilepsy is one of the most important chronic neurological diserderldwide affecting more
than 50 million people of all ageAmonghese almos20% ofepilepsy cases arncontroliable

and haveanunknown source of this abnormal electrical iay.

The present methods for detection of the epileptogenic foatomprises positron emission
tomography, single photonemission computed tomographymagnetoencephalography,
electroencephalognehy (EEG) alone and EEG/functiomalgneticresonancemaging(fMRl), all

with limitations in terms of temporal and spatial resolutions. In order to overcome some of those
limitation a new method using fMRI alone was developed based on the hypeshteatthe
epileptogenic focus showBlood Oxygen Level Dependgii@CLD) temporal profile distinct

from the remaining brain parenchyma during interictal activity and that the epileptogenic focus

BOLD signals show lower coleity than healthy parenchyma.

Theefore, bi-dimensional temporal clustering analysis (2dT,@Ada-driven technique was
usedto identify brain regionswith similar temporal profile. Then, the BOLD signals of these
regions were assessed regarding complexity uaingpdifiedmultiscale entropyalgorithmand
alsodetrended fluctuation analys in orderto identify which of thoseregionscorrespondedo

epileptogenic tissue

In order todemonstrate the applicability dhe developednmethoda sample of three epileptic
patients wereanalyzeccomprising three types of epilepaynilateral and bilateral temgral lobe
epilepsiesand focal cortical dysplasi@ihe results showed th#tis method is able to detect the
brain regions associated witlepileptogenic tissue The resultsalso showed that the
epileptogenic focus influences the dynamicsadfited brainnetworks.This could bakey factor

in the applicability of this method to other epilepsy cases

Finally, new perspectives are envisioned concerning the use of this method in the medical care

of epilepsy and in the study of other brain networks.

KEYWORDS

Epilepsy epileptogenic focusfunctional magnetic resonance imaging; temporal clustering

analysiscomplexity analysis
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CHAPTER INTRODUCTION AND BIBDIVES

Epilepsy is we of themost important chraic neurological disordemorldwide affecting more than

50 million people of all ages. Although 70% of the cases are treatable witbplaptic drugs and

fSaa GKIYy mMm: gAGK AdzNBAOFf (GKSNILRI (KBaNBYIAYyA:
disorder brings an important impact on epileptic patients conceruwiisgrimination social stigma

and higher national healthcare cosBeople with epilepsy can be targets of prejudicel the stigma

of the disorder can discourage people from segkimeatment for symptoms and becoming

identified with the disorde{WHO 2012)

An epileptic seizure can be defined ast@nsient occurrence of signs and/or symptoms due to
abnormal excessive or synchronous neuronal activity in the &(&isher et al. 2005Yhese brief
electrical disturbances can have effects on sensory, motor, and autonomic functions, provoke
changes in awareness or behavior, loss of consciousness, and convulsions. Uncontrolled epilepsy

can also lead to depression, anxiety, and loss ofitwg function(Avanzini et al. 2013)

The epileptogenic zoner focusis a theoretical conceptorresponding to the brain volume that
needs to be removed toender the patients seizurree, i.e., it describes the abnormal cortex
responsiblefor the generation of epileptic seizureghus, the cessation of seizures is accomplished
with the complete resectionf this area(Hamandi et al. 20Q5This focus is characterized by two
types of electrical activity, ictal which meadsring seizure, and interictal, which mean between

seizures. The last one is normally more brief in time and is pelikdiet al. 2014)

Hereupongpileptogenic focuglentificationis important to epilepsy diagnostic and seizure control.
Thepresentmethods for this purpose are based on Positron Emission Tomographya(RESingle

Photon Emission Computed Tomography (SPE®Duntz 2007; Kim & Mountz 2011)
Magnetoencephalogphy (MEG) (Foley et al. 2014)Electroencephalogmhy (EEG) alone
(Hassanpour et al. 2004; Leal et al. 2007; Leal et al. 20@BEEG/functiondagneticResonance

Imaging (fMRI) analys{eal et al. 2006; Leite et al. 2013; Wang et al. 2012; Hamandi et al. 2005;
Thornton et al. 20180 ¢ KSNBXQa | GNIRS2FF Ay GSNya 2% GAYS
techniques Fig.1). The first technique is a direct measure of fhkeorodeoxyglucos@~DG) uptake

in the brain based on the hypotheses that the cortical blood flow increases in the area of seizure



discharge(Mountz 2007) The second 0

Brain

one works is a similar way, but with .

different radiotracer T¢99m) (Kim &

2
Map ~
fMRI

2-Deoxyglucose

size (m)

Column

Mountz 2011) The main limitation of & twer

Neuron _5

using PETand SPELCto localize the

Dendrite -6

epileptogenic zone relies on specificit  synpse -7

T T T T
3 2 1 0 2 3 4 5 6 7

of abnormalities due to its limited S Log time (s)

Non-invasive [ ] Invasive

spatial resolution and poor temporarig.1- Relative spatial and temporal sensitivities of different functi

resolution (Morgan et al. 2004; Clarebrain imaging methodsMEG: magnetoencephalography; sEEG:
electroencephalography; fMRI: functional magnetic reson

1997) Furthermore, the need for a
imaging; PET: positron emission tomography; SPECT: pimgfen

radiotracer is also a drawblcmaking emission computed tomographydapted from(Jezzard et al. 2001

this technique more invasive.

The thirdand fourthtechniques used to localize ictal and interictal electrical activarg MEG and

EES. There are two main modes of using tlatter modality, scalp EEG (SEEG) and intracranial EEG

(IEEG). Both dfhesemodalities have high temporal resolution, allowing the detection of brief spikes

2F SEtSOUNRO FOlAQGAGRES &adzOK a AYUSNROGIE | OGAGAL
specificity for presurgical assessment, the spatial resolutissEEfGand MEGSs poor. In orderd

improvethe resolution of SEE& highdensity of electrodes is needddeal et al. 2007; Leal et al.

2008) This issue can be overcome by iE&SBhe electrical signal is recorded directly from cortical
GAaaddzSd® ¢KS YIF22NJ RN} gol O]l 2F GKA& fl1adG Y2RFfAGeE

Lastly, simultaneous EEMRI is an emergent techniquehich combineshe best of two modalities,

hightemporal resolution from EEG and high spatial resolution from fiWIiRd. strategyfollowed in

this case is to continuously sample the interictal and ictal events while measuring the BOLD signal
simultaneously wittEEG. This is somewhat cumbersome as tiireq a very specific and delicate

setup, particularly for acceptable recording of the EBBerwise it will bring several kinds of noise

problems, including movements artifacf@/ang et al. 2012)compromising the feasibility ofHEs

fMRI studies. Another shortcoming associated with this technique, and with EEG alone, is that they

FNBYy Qi aSyaArdAgdsS G2 AYyOiSNAROGEE SLAfSLIGAT2NY | OG
only in patients with frequent interictal events recd from the sEE@Morgan et al. 2004; Lopes

et al. 2012) To overcome some of the limitations described above and find a more suitable solution

to localize a seizure onset, efforts are being taken to develop new processing methods using fMRI



techniqueonly (Yee & Gao 2002; Morgan et al. 2004; Hamandi et al. 2005; Morgan et al. 2008;
Morgan et al. 2010)

Another approach to epifesy diagnosis and characterization of epileptic signals behavior has been
recently taken on the complexity field. Some authors have been hypothesized that epileptogenic
brain tissue has a different complexity than healthy brain tis§erish et al. 2004; Monto et al.
2007; Protzner et al. 2010) complete characterization of this complexity could lead to a definition
of a physiological biomarker applicable to epilepsgimely fordiagnosticand monitoring of its
treatment. For thatpurpose two main approaches can be used: a disorder level hgaeghng et

al. 2009; Protzner et al. 2010} a fractal properties base@Parish et al. 2004; Monto et al. 2007)
methods. In both of them it is expected that in the epileptogenic focus the complexity is lower

because of its intrinsic periodic interictal electric activity.

This thesis mject will focus on the epileptic focus localization through fMRI BOLD signals and then
on the complexity analysis of its time series. Therefore, in the next sabiéoroncepts inherent to

this workwill be described

1.1.BOLD signal origand fMRI analys
Functional magnetic resonance imaging (fMRI) is a powerfuimasive tool thagllowsthe study
of the functional responsesf the brain in aguantitativeway. One advantage of using fMRI is the

identification of brain activity due to a stimulus wighhigh spatial resolutio@ezzard et al. 2001)

This technique is based on th BOLD Signal Response
hemodynamic response functior “impulse” response
. . . 4 to a brief stimulus more sustained positive BOLD
(HRF) Of the braln, WhICh arise = regponse(largerscaleﬂowchsngES,
. . . . = " excess of HbO2 created, reduction
when a given stimulus is appliec 2 in cone. of Hbr)
The HRF is a transfer function ¢ & post-stimulus undershoot,
) 2 return to normal flow but
the neurovascular  coupling @ slow CBV recovery (giving
effective increase i [Hbr])
characterisic of brain activation i ' ' V4 —
‘\ ," 45 8s 2s
When a stimulus acts on ¢ ~OONL time / secs
brief initial “dip”

particular region of the brain (HbOz —Hbr, local flow changes)

. . {MRI “dip™ Menon et al , MEM 33:453, Emst & Hennig, MRM 32:146; Hu et al, MRM 37877
evokes, in that area, a change in _ o
Fig.2- BOLD Signal Respon®ea brief stimulus. Adapted fronJezzar

blood flow. This facilitates,ggg)



glucose oxidation by providing more oxygen molecules. If there is an increased consumption of
2 E@ 38y I e anknBrékBed tohcendration deoxyhemoglobir{dHb), a paramagnetic oxygen
binding molecule. Oxyhemoglobin (oHb), on the other hand, is a diamagnetic molecule with a

magnetic susceptibilitgmallerthan that of dHEClare 1997)

Therefore, achange in hemoglobimxygenation leads to changes in tihacal distortions 6 a

magnetic field appliedjeneratnglocal fiet gradients and locathanges off 2* in tissuethe blood
vesselsThe measuref the T2* originate the BOLD sign@lezzard et al. 20019eeFig.2. The brain
hemodynamic response can be summarized in the following steps. When a brief stimulus acts,
GKSNBQa Iy AYAGALFf R 8réasdfoiy§en eomisumpliofiG2A)l Theéhythet R dzS
increased blood flow decreases the dHb concentration increasing the BOLD Bigre®)( Finally,

a delay of the return to the initial blood volume ldvprovokes a decrease of oHb, and a

consequently increase of dHb reducing temporally the BOLD signal intd¥igiBQ).

The output of fMRI is a set of volumes comprising the scans of
the brain at successive times, usually namaw data. Each

volume is divided in resolution dependent number of small

&

' ™

elements, named voxels, in which the information of the

. . . Preprocessing
correspondent brain region is store@@ne of the goals of

\ J

acquiringfMRI data is to perform a robust, sensitive, and valid

&

s N

andysis to detect brain regions that show increassgnal - .
Statistical analysis

intensity at the stimulus time. In other words, the aim of fMRI

\. J

analysis is to identify which voxels hauhkeir signal @

Inference and

significantly greater than the noise le&lare 1997; Jezzard :
Presentation

et al. 2001) A typical pipeline analysis, schematically

o . ) Fig. 3- Steps inelved in the processing
represented inFig.3, includes a first step of raw data pre

fMRI data. Adapted fronfClare 1997)
processing that usually incluggorrection to time effects and
to subject movementluring theexperiment, anddata spatiakmoothing to improve the signal to
noise ratio Additional steps, such as, data detrending, filtering and regrgssut of nuisance
covariates are often taken.h& aim of this prgrocess igo improve the detection ofctivation
events Then, a statistical analysis is perfearto detect which voxels shows a response to the
assessd stimulus. This step usuallyaives a model estimation, through a general lineaydel
(GLM) based on convolution between the HRF and the stimulus temporal profile. Finally, in order to

display the activation images, statistical confidence must be given to the results by inferring about

4



probability values Se Appendix Afor more information about statistical analysiaferenceand

statistical mapgresentationin fMRI

The assessment ofdimulusvia a pipeline analysis as described above can be one of two types.
The first one comprises aistulus that has typically few time points of duration, and its analysis is
usually named a bloetelated one.The second onea transient stimulusvith a short durationis
used,whereby its analysis is named an eveelated one(Josephs et al. 1997 epilepsypnce the
stimulus is usually a transient spike corresponding to interictal electric activity, the analysis

described in the above pipelira eventrelated type.

Since no technique is free of shortcomings this one has several limitations too. One of them
concerns the temporal resolution, which is limited by the profile of the hemodynamic response, and
low signalto-noise ratio (SNR) and contrastnoise ratio (CNR), leading to high variance in the
results. One way to overcome this last limitation is tpeat the stimuli more than on¢elecreasing
variance in resultflezzard et al. 2001Mowever, this is difficult to apply in epilepsy since the timing

of the stimulus, interictal or ictal seizure activity, is random and uncontrol@fitegan et al. 2007)

1.2. Epileptogenic focus localization

As explained before, the timing of ictal and interictal activity in epilepsy is unknown and
unpredictable. Therefore, an analysis B SR 2y Y2RSfta AayQd adaAaidloftS (2
focus, since no assumptions about temporal profile of the stimuli caimmbde Datadriven

techniques have been developed to deal with such cases as they are-fremléome examples of

such mehods are the following: principal component analy@sigiura et al. 200&%ou et al. 2011])

independent component analysis (IGRpdionov et al. 2007hierarchical clusterinfCordes et al.

2002; Keogh et al. 20059nd tizzy clusteringSomorjai & Jarmasz 2003; Wahlberg & Lantz 2000)

When applied to fNRI datasets these methods result in a large number of componetish are

hardto classify without spatial and temporal informatigDe Martino et al. 2007; Rodionov et al.

2007).

Another datadriven method developed in the past years is temporal clustering analysis (&€2A)
& Gao 2002; Gao & Yee 2003; Morgan et al. 2004; Hamandi et al. Zb%3 aone-dimensional
algorithm that groups together time serie® one single clustewith the same temporal profile

based on a given criteridhis criterial could hdor example, the same maximum signal magnitude



timing or the same first signal magnitude increase, to one single clustemodification of the

original TCA to a flimensional method, twalimensional temporal clustering analysis (2dTCA)
(Morgan et al. RO7; Morgan et al. 2008)pletects different BOLD responses, assumed to be from
different sources It allows he detection of more than one single cluster. Once obtained the

temporal profile of the clusteiit is possible to perform an evenelated fMRI aalysis.

Ly a2 NHI (Mdgan es &.NDO7; Victoria L Morgan et al. 2008; Morgan et al. 20&0)
application of2dTCA to epileptogenic focus localization is based on the hypothesis that interictal
epileptic activity provokes a transient BOLD spike with a rate slower than that of BOLD images
acquisgtion. This hypothesis was based on preview results of-iM studés applied taemporal

lobe epilepsy(SalekHaddadi et al. 2006; Kobayashi et al. 2005; Federico et al. 2005; Bagshaw et al.
2004) The main results of these works showed that interictal activity detected by EEG is associated

with a BOLBignal change.

1.3. Complexity analysis

The human brain has an inherent high complexity arising from the interaction of thousands of
neuronal networks that operates over a wide range of temporal and spatial g¢fléshison et al.
2013) This enables the brain to adapt thet constantly changing environment and to perform
mental functions. In pathologic brains this capacity of adaptation is often impaired, leading to
ordered or random patterns of behavior. In case of epilepsy, the study of such complexity could help

to understand how an epileptic brain functions.

To assess brain complexitye can only observe the macroscopic outpubedin function, such as
via EEGand fMRI, where a signal changespresentsa responsefrom millions of neuronsthus
creating the need for robst methods to evaluate the complexity signal from such techniques.
Thesemethods are usually based on one of two approaches: disorder level lasadfractal

properties based.

The first one comprises methods that are entrdmsed, by quantifying theegularity or orderliness

of a time seriegPincus 1991; Kurths et al. 1996; Andino et al. 2000; Richman & Moorman 2000)
Entropy can be conceptualized has a measure of the degree of disorder of a given system and
increases with the degree of irregularity, reachirggitaximum in completely random systems, such

as uncorrelated or white noise, and its minimum in completely ordered systems, suchiragea



frequency sinusoid. Physiologic outputs usually exhibits a higher degree of entropy under healthy
conditonsthany | LJ G K2t 23A0Ff adladSY a GKS&@QNS OKIF NI O
range correlations and loss of informati¢g@oldberger et al. 20). However, an increase in the

entropy may not always be associated with an increase in dynamical comgéagia et al. 2002)

One method that has been developed and imyed in the past years and has been shown to

effectively quantify the complex dynamics of biological signals is the multiscale entropy((0Sta)

et al. 2002) It is based » measuring the entropy over multiple time scales inherent in a time series.

The second approach on brain complexity assest relies on the evaluation of loagnge
temporal correlations (LRTC), which reflect the -affihity of a given signal. The maiy of
guantifications methods such as spectral analysis and Hurst an@gsig ¢al. 1995)or the LRTC

study are invalid to evaluate biological signals because, as they are complex and show fractal
properties, their stationarity are not guarantee. Thus, a method capable of detecting the LRTC was
developed in the past years to ovaroe the nonstationary problem of biological signals, named

detrended fluctuation analysis (DF#®eng et al. 1994)

1.4. Thesis hypotheses and goals

This master thesis project is based on the hypothesestti@epileptogenic focus showsBOLD
signal with aistincttemporal profilefrom the remaining brain parenchyma, either during ictal and
interictal activity(Morgan et al. 2007; Victoria L Morgan et al. 2008; Morgan et al. 2B&@jcularly,

it is known thatthe interictal epileptic activity provokes a transient BOLD spike with a rate slower
than that of BOLD images acquisiti@@alekHaddadi et al. 2006; Kobayashi et al. 2005; Federico et
al. 2005; Bagshaw et al. 200Zhis makepossiblethe application of a method for the localization

of the epileptogenic focus, the 2dTCA.

Furthermore, it is welknown, from epileptic EEG signal studies, the periodic behavior of epileptic
activity of epileptogeit brain regiongPaish et al. 2004; Monto et al. 2007; Protzner et al. 2010)
Indeed, in theseEEG studies it was shown that the epileptogenic focus EEG signal shows lower
complexity than healthy parenchyma. However, thareno studies showing the same results with
epileptic BOLD signals. Therefore, for the purpose of this thesis project it is hypothesized that the
epileptogenic focus BOLD signals shows lower complexity than healthy parenchyma. Also, this

complexity can be assessed by methods like MSE and DFA.



Summarizingthe innovation of this work is to explore the complexity properties of epileptic BOLD
signals through the application of an algorithm that localizes the epileptogenic focus and extracts
its BOLD signal. The main aim is to provide a definition of a biemdok epileptic tissue

identification in order to help on thdiagnostic, monitoring and treatment of epilepsy.

Hereupon, this thesis project have three main goals. First, the algorithms referred above, the 2dTCA,
the MSE, and the DFA, will be implementadVatlab®™ languageusing thecommercial software
package Matlab® R2014all of these methods will be optimized for BOLD signals analysig
simulated data Second, a study with sample of @ileptic patients will be carried out by first
localizing ptential epileptogenic foci with 2dTCA and analyzing complexity of its BOLD signal in
order to compare with those of healthy brain parenchymairdtbased on the hypotheses stated

above the most likely epileptogenic focus will be chosen.

1 The MathWorks Inc., Natick, MA, 200atp://www.mathworks.com/)



CHAPTER BIDIMENSIONAIEMPORAL CLUSTERNGLYSIS

2.1. Introduction

TCA was firstly introduced by Liu and colleagues with a pioneer work wsrsethod was used

to study the temporal response of the brain after eat{hgu et al. 2000)The problem addressed by

GKAa | LIINRIFOK ¢gla GKS FFOG GKIFIG GKSNBQa y2 Y2RSt
brain regions will be activated after eating, once the activation timinghisxown This algorithm
aSHNOKSE T2NJ GKS YIEAYIt NBa&LR gfaubdinfensiondlldddek @2 ESt C
characterized in terms of space and tinm&o a simple relationship between theumber of voxels

reaching maximunsignalsand the time,named histogram. A&oncept ofbrain parcellation that

accounts for timing and connectiyitwvas accomplished for the first time with the results of this

work.

In order to improve the brain .
activations timing detection Yee
and Gao modified the sensitivity
of TCA algorithm basinghe
method onthe integrated signal R
intensity of a temporal cluster at
each time poin{Yee & Gao 2002;
Gao & Yee 2003ather than only

on the size of a temporal cluste

e

Fitted and adjusted responses
all peaks

(Liu et al. 2000)In other words,

n
=

@
=
=3

in the modified algorithm a

@

condition is  superimposed

=

o
=3
=3

o

b

limiting the maximum signal

# of voxels reaching max o
]
[=]
L=

response at [28.125, -73.125, -17.5]

400 I : ‘r;;‘
ofha agd ARt "T_"
change allowed to be clustered , jﬂ!ﬂ . GJ SM—rWn 1‘3'..‘_:»'-;\'_. ’
The results of Yee and Gao wot saconds: ® '
. m0 100 200 300 400
show that, despite the fact that time (seconds)

the modified TCA is more Fig.4- Results from an epileptic patient with unknown focus localizata
. L activation map of peakdetermined with TCAp: histogram output from TC

sensitive than the originabne, o _ _
c¢: response of the voxel indicated by the arrow (dotted line) with moc

neither of them could detect BOLD response time course (solid line). Adapted fiidiorgan et al. 2004)
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peakssmaller than the noise levelhis opened a window to novel problems, like time shift and

movement artifacts, that needed to be addressed before the TCA application.

The applicabn of TCA to epileptogenic focus localization was first addressed by Morgan and
colleagues iffMorgan et al. 2004)nder the hypothesis that the timing of interictal activity could

be determined using TCA on resting fMRI data. Then, activation maps created byedatad fMRI
analysis using the discovered discharges timomysd be determined to show which brain regions
are presumably part of the epileptogenic foclibe resultfrom an epileptic patient with unknown
focus localizatiois shown irFig.4. It showghe histogram output from the TCKi¢.4b), the results

of statistical analysig-{g.4a), and fitted and adjusted responses of one voxel pertaining to the found
cluster fig.4c). The fact that the TCA defineseosingle histogram, i.e., one single cluster, implies
that voxels spatially distant may be grouped togetli@s seen irFig.4). Whether this detected
cluster temporal profile is a representation of the epileptogenic focus oratsta mixture of
a2dz2NDOSa Ol y Qitheterex A1akSSa aSSFRF S QiR Sy Saa 2F ¢/ ! OF y QI

"-r‘_‘ c ‘J ‘f1 ; | ‘ PF | | }ﬁll

b : R
,'. : a-x ' | ’
v. ‘ !
TCA derived EEG derived

Fig.5- Statistical maps from a subject with epilepsy obtained with models derived from TCA and frosdaRi&d from

(Hamandi et al. 2005)

Hamandi and colleagues assessed the TCA performance by implementing and evaluating it, as
described iMMorgan et al. 2004)using fMRI data acquired with simultaneous EEG in patients with
clearly defined focal epilepsy and frequent interictal discharggeamandiet al. 2005) They
demonstratal that the temporal clusters found were closely correlated with motion events, and not
interictal epileptic activity, refuting the validity of using these as onsets in statistical anatysis.

order to illustrate this issuel KSNBE Q& | NBadzZ G yd &adl (Aspieserdl £ Y I LI
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in Fig.5. It represensthe activated brain region found with models in which the onsets were derived
either from TCA and EEG.iAsanbe seen those regbns doesiot match with each other, contrary

as expected, suggesting that there may be a confounding with motion events when performing TCA.
Hamandi et al. work brought new insights about the limitations of using TCA applied to epilepsy,
suggesting that irorder to improve this methodology thers the need to primarily separate the
noise from the stimuli source and then compare the performance of TCA with other method such

as ICA, for example.

Morgan and colleagues posterior wofklorgan et al. 2007Morgan et al. 2008prought a new
approach to this area by modifying the TCA methodology and overcoming some of the shortcomings
descriled above. They developed a twdimensional TCA technigque addressing the problem of
motion and physiological noise by detecting and sorting out separate BOLD responses assumed to
be from different sources. This was based on the assumption that BOLD digngks due to
spontaneous interictahctivity may berelatively small compared to those of noise, motion, and
other activity and are expected to be only slightly slotirm the rate of image acquisitigiviorgan

et al. 2008) Furthermore, as the shape of this BOdiPnal response is well known it allows the

application of the 2dTCA.

Briefly, inFig.6 is depicted a graphical representation of how 2dTCA works and a comparison with

TCA. The 2dTCA algorithm will construct -gilviensional hisggram where columns represent

temporal clusters with different temporal profiles. The criterion of grouping time series to different

clusters is based on the first time point at which the first signal increase occur, instead of grouping

with maximum signkcriteria(Liu et al. 2000; Yee & Gao 2002; Gao & Yee 2003; Morgan et al. 2004;

Hamandi et al. 2005)This assmes that different sources of activation will not have overlapping

timing of BOLD response at the beginning of the time series, which is not proven to be in that way.
Supposing that in a functional dataset there doer 32 ESt 8 Q GAYS &atBrybr&a 6 A (K
profiles (Vox 1o 4 inFig.6), using2dTCA/ox 1 and 2 we grouped together in the same histogram

column, representing a reference time course of one clusder the other hand Vox 3 and 4 will be

are grouped togethein another column, representing anothand independent reference time

course of a different cluster. If, for example, one groupafels represenan epileptogenic focus

and another a noising source, such as movement, this algorithm could rule outtisedyg sorting
RAFFSNBY (G &a2dz2NOSa Ay RAFFSNByd OftdzadGdSNa® LF | ¢
g2dz R 06S 3INRAzZLISR G(G23SGKSNJ £t SFRAYy3a (2 GKS ARSyYy(A

epileptogenic tissue, similar what was decribedin (Hamandi et al. 20055eeFig.5.
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Fig.6- Graphical depiction of the TCA and 2dTCA algorithms showing how multiple reference time courses are created by
the 2dTCA algoritin when multiple different voxel time courses are present in the d&targan et al. 2008k represents

GKS GAYS LRAYG G 6KAOK (KS @g2EStQa GAYS aSNARS&a A& YIEAYdzyo
increase on the time series.

InMoA 'y | yR 02 f (ViGdridldioigan etva® R the performance of 2dTCA was
assessed, in terms of specificity and sensitivity, by comparing it with the performance of TCA and
ICA applied to the same simulated data, where a-etiwn activations were define(Morgan et

al. 2008) The results showed thatdZCA algorithm can detect more than one independent
reference time course, or equivalently more than one temporal cluster, more effectively than TCA,
but slightly less effectively than ICA. However, they argued that as the 2dTCA algorithm will cluster
only transient spikes, while decreasing sensitivity to signals of other temporal characteristics, the
large number of components determined with ICA would make it difficult to determine the
components of interest in vivo when the activation regions are notwknoThis confirms the

advantage of using the 2dTCA as a d#iaen foridentifyingthe epileptogenic focus.
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As a final remark about the application of 2dTCAhealthy subjects anépileptic patients, more
recent work have demonstrated that this algorittesan also be used to detects clusters associated
with the defaultmode network(DMN)(Morgan et al. R07;Morgan et al. 2008; Morgan et al. 2010;
Pizarro et & 2012)in healthy(Cauda et al. 2010; Fox et al. 200%] epileptic subjects and with
specific regions, such as the visual, auditory, and motor cortices, through external stihuli w

known timing(Morgan & Gore 2009)

2.2 Materials and Methods

2.2.1. Simulated Dataset Characterization

Fig.7- Depiction of the two regions in which the epileptic activity was simulafg@®16 voxels cubic regions located at

the left temporal lobe B) 216 voxels cubic regions locatedrigtht frontal lobe.In each frameA) andB), the top left, top

right, and bottom left images represent a sagittal, coronal and transverse view, respgctive

A simulated dataset was created, according to the pipeline presentéidhatamian et al. 2011)

from a preprocessed rest fMRI healthy subject scan fggeendix Bor more details of this subject

data acquisition) by adding simulated BOLD signals in order to create simulated epileptic activity.
For this purpose two regions of interest (ROI) were defined &), one in the left temporadbbe

(LTL) and the other in the right frontal lobe (RFL), to which simulated epileptic activity was added.
BOLD signals representing this type of activity were created by convolving the HRF with a spike train
containing the timing of each event (s€ey.8) and added to the BOLD signal already presented in
each ROI. The final goal was to obtain simulated data with all combinations of the following
characteristics: 5 and 10 spikes randomly distributed in time, correspondent tandTRFL ROIs,
respectivelysimulated activation Y LJX A 1 dzZRSa 2F nop (2 w> Ay AYONBYS
27, 64, 125, and 216 voxels. Within a ROI the activation frequency and amplitude is homogenous.

Each simulation was repeated two times reggtin a total of 56 simulated datasets.
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Fig.8- BOLD signal created by the convolution of the WRtra spike train containing the timing of each ev€Fdp) and
its addition to the BOLD signal already presented in the real (@atsom).

2.2.2. Algorithm implementation
The 2dTCA algorithm implemented in this thesis project is based mair{Mangan et al., 2008)
work with some modified steps based ¢khatamian et al. 2018nd andher additional original

steps.

fMRI Data preprocessing

Concerning fMRI data, some ppeocessing steps are expected before the beginning of the 2dTCA
algorithm itself. Namely, slice timing correction for effects due to interleaved acquisition,
realignmen for correction of motion effects, spatial smoothing, detrending (an additional step not
performed in(Morgan et al. 2008; Khatamian et al. 201 Bndtemporal filtering. The type of filter
used in this last stevasa bandpass filter containing the frequencies expected in BOLD response

(Glover 1999)instead of a $oint averaging filter used ifMorgan et al. 2008)

Data transforméon

Each functional data series wlsmatted into M one-dimensional arrays corresponding to thve
analyzed voxels of the dataset. In other words, each array cardairKk S @2 ESf Q& NiAYS
time points, given by the number of volumes of each data. The next steps were perfoedon

this data.

14
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Baseline definition and percent change computation
I RSTAYAGAZ2Y 2F GKS o0l aStAyS @ltdsS +ta (GKS

as in(Morgan et al. 2008)implies an assumption that thgubject is at baseline during that time,

I S NJ 3

which may not be true. Therefore kameans techniquevasusedsuch thatS  OK @2 ESt Q& (A YS

wasseparated into three clusters: one with high values, another with low values, and the last one

with the remainingmiddle values, seEig.9 . This differs from the two clusters used(ikhatamian
et al. 2011whereast wasassumed that the BOLD response can represent an activatinincrease

in amplitude, or a deactivation, a decrease in amplit(@itau et al. 2013)Thus, once we want the

baseline of the signal without activation, the mean of the middle cluster was used to estimate the

baseline.

Time Series Means estimation

7581 . . 15
— Time Series
— Mean of middle cluster
756 [ Mean of upper cluster
""" Mean of lower cluster 1
754F /

752f 0.5

)| L)) .
LR

(%)

7441 Vo \/

7420 50 100 150

Time Points

Fig.9- Example of theéhree baselines (one corresponding to the mean of each cluster) estimatedkfroeanstechnique.

The scale athe right represensthe percentage signal change computed with the baseline corresponding to the mean of

the midde cluster.

The percent sighal changeasthen determined according t&q. 1.

L EN Vgl s
>l P o= o b £q.1

The remaining analysigasperformed on this percent change data.

Candidate voxels selection
All voxels expected to contain BOLD resggmto spikewereidentified. For this purpose, two types
of limitswere defined: one related to the range within which theaximumBOLD signal alowed

to change and another corresponding do the classification of a spike as a transient spike.
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For the frst one, lower boundariesf maximum signal chandeom 0 to 2% in increments of 0.%

and upper boundariesf minimum signal changieom 3 to 11 % in increments of% were tested

on the simulated dataseilhe goal of tfs testis tofind the best combiation of boundaries that
allows the selection of a maximum BOLD signal change of interest, but rejects the maximum signal

changes due to other sources, such as noise artefacts.

For the second one, the test were run for thresholds in the range of O tar2iatd deviations above
the baseline in increments of 0.5. The most suitable set of parameters were chosen as that which
gives the minimum average false positive rate (FPR), i.e., the best average specificity, across all
simulated data with an average trymsitive rate (TPR), i.e., average sensitivity, greater thgra
method similar to that used i(Khatamian et al. 2011Yhis limits were found to be 0.5 and3as
lower and upper boundariegespectively, and 2 standard deviations above the baseline as the
threshold for transient spike classification, $€ig.10, with aTPRequal t00.98 and a correspondent
FPRequal to0.59 andanarea under the curve equal @.62.

Average sensitivity/specificity analysis

Selection of candidate voxels: thresholds definition
1 o—Se—aD -

o
[e0]
T

o
(o))
T

sensitivity

©
N
T

0.2

T

0 0.2 0.4 0.6 0.8 1
1-specificity

Fig.10- Average sensitivity/specificity analysis for thresholds definition of candidate voxels selectiotKetgyng the
average sensitivity above 90, the best average specificity (red circle) was found for up and low boesdf 3 and 0.5%,
respectively, and a threshold of 2 standard deviations above the baseline ViltRaequal t6.98 and a correspondent
FPR equal t0.59. The area under the curve is equaldt62

Hereupon, if a voxel maximusignal changgaluewaswithin that limits, the voxelasconsidered

for cluster analysigQtherwise the voxelvasconsidered as a global orféts maximum signal change

was under the lower signal change boundary or excluded of the analy&is maximum signal
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changewasabovethe upper signal change boundafyext, a global time courseasdetermined as

the average of all global voxels and regressed out of data.

Event detection and 2D histogram mapping
A two-dimensional maphist2d wascreated in arN by N matrix by incrementig the valuesn the
following manner for alM voxels. Br each time point:

<«|rgv]:-=®

<«|rgv]: =" Eq.2

wherethresholdcorresponds to the limit at which an eveistonsidered to occur intha?i @32 ESt Q&
time course ands equal to 2 standard deviations above the baseline of that voxelxanéqual to

the time pointy at whichthev2 E St Q& (i maxBnund $Hedef&rel thekadlis ofhist2dis the

time of the maximum signal increase and #zaxis is the time at each significant signal increase of

the time series.

The result of this 2D histogram congdtof columns that represents individual histogranof
significant increases for those voxels whose maximum signal increase occurred at time(pe@t

Fig.6). These histogramsere named reference time courses (RTCs).

RTCs number reduction and its normalization

After the 2D Istogram filling a very important stegasto analyze which RTCs are truly unique, i.e.,
which ones describe activity temporally distinct from each other. Voxels can have temporal
behaviors closely similar, but with slight variations in their time couttsaiscould lead to different

peak timings. Therefore, the number of RT¥@se reduced in two steps.

First, a correlation coefficierwascomputed between each pair of RTCs in order to compare the

time course of all RTCs to one another and those with aabove a given threshold are summed.

The second step of grouping RT¥asperformed by comparing theactivityand by grouping those
that share activityn time at a given percentage. As shownFig.11, first, the mean of eactw ¢ / Q&
time course was defined as threshold above which the RTC is considered to have a spike of
activation (see corresponding whitelistskig.11B). Second the amount of sharadtivity between

the two RTCs was computed aridhis value were equal or above a given percentage, the RTCs

were summed.
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To test which threshold value (of the first step) | 60 -~ RTC1
and percentage (for the second step) are the best,. —— RTC2
a range from 0.1 to 0.9 in increments of 0.2 and 40

10 to 90% in increments of 2% were tested on fé

the simulated data, respectively. The 20|

performance of each threshold was evaluated by

EyEE &l Ay St-mSp; thrésholdad AsEL, % 50 100 150

Time Points

(seet-maps creation) individually, choosing the
two ones whih best describe the two ROk
regions where simulated epileptic activity was

created), and computing the correspondent TPR

as the ratio between the number of voxels

activated in the ROIs and the size, in voxels, of ) ]

RTC 1 share 90% of its
that which gives the lower number of resinl activation with RTC 2

those. The best set of parameters svahosen as

RTCs, i.e., groups together more RTCs, Witlrig.11- illustration of the second stepf grouping RTCs

reasonableaveragel PR, a criterion similar to thais based on the percentage of shared activity between

used in(Khatamian et al. 2011)rhisaverage is RTCsA: Temporal profile of two hypothetic RT@sbinary

representation of each RTC spike above the mean, v

simply the mean of the TPR of all simulated da _ o
the white color represents activations.

Hereupon, as the first stegvas independent from the second one, the correlation coefficient
thresholdwasfirstly defined.Theanalysisshown inFig.12, demonstratethat the sensitivityeaches

its maximum for a threshold of Owith an average TP&da correspondindg-PFRof 0.52and 0.06,
respectivelyand an average of RT@smber of19, then it starts to declineRegarding thesecond

step thresholdit wasdefinedby fixing the first parameter equal to the best value found., 0.7,

as this steps follows the first in the algorithrifthe results showed thadfter performing the
correlation coefficient grouping step, the influence of the second step in the resuiegigible,

i.e., the number of resultant RTCs as well as the TPR remains similar to that values corresponding to
a correlation coefficient threshold of 0.7. Therefore, the limit chosen for the second grouping step
was 0.7with an average TP&da correpondingFPR).06, respectivelypf 0.2 and an average of
RTCs number of 18sit performs the highest grouping of RTCs wdtkimilarsensitivity as that for

the first step.
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Once the final RTCs are defined, tlvegre normalized by subtracting tiiemeanand dividing by

their standard deiation.

Average sensitivity/threshold analysis
RTCs number reduction: thresholds definition

1 T T T T T T T 30
0.8 -24
z "
2 06 418 O
D ////+777*\4 —
e 0.4/ 12 v
% 0.2¢ 1 *
O r r r r r r r O
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Correlation coefficient threshold
l T T T T T T T 30
0.8 124
2 "
= —
D g4 112 oy
B o2 16 T
0 r r r r r r r O
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Shared activity threshold

Fig. 12- Average sensitivityRTCsanalysis forcorrelation coefficient Top) and shared activityBpttom) threshold

definition of RTC groupingtep. Optimal parameters for correlation cdefient and shared activity threshold were both

defined as 0.7 with a correspondent average TPR and FPR and an average of RTCs number of 0.52, 0.0632 and 18.8 for
the first threshold and 0.518, 0.0628 and 18.9 for the second threshold, respectively.

t-maps creation

The RTCwerefinally passed, along with the nuisance variables (the global time course and motion
correction parameters), as regressors to the GLM. In order to obtain the correspondeys all
regressorsvereincorporated as contrasts andgted for individual effecseeAppendix Afor more

details) This processing stepasperformed with the software package SPM

2.2.3. Performance analysis of simulated dataset: sensitivity analysis
Once all thresholdsvere defined itwasimportant to assess the performance of each simulated
dataset in order to determine thenost suitableepileptogenic BOLD activity characteristics for
2dTCA input. This evaluation was accomplished by running the 2dTCA algorithm toredatedi
data (see2.2.1 Simulated Dataset Characterizatiprusing the parameters defined above and
computing the average TP&d FPRfor each casein a similar way as in2.2.2 Algorithm

implementation - RTCs number reduction and its normalization

2 Statistical ParametriMapping(http://ww.fil.ion.ucl.ac.uk/spm)
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2.3.Results
The Fig. 13 shows the results of the TPR/FPR analysis to assess the performance of the 2dTCA
algorithm in detecting the several forms of simulated epileptic activity. The top and bottom rows of
the figure show thefollowing TPR and FPR values for simulated epileptivigcwith 5 and 10

spikes, respectively, information of the size of the ROIs and the HRF amplitude above the baseline.

By inspection of the TPR images, it is observed that the TPR values have a tendency to increase
towards the increase of both the ROIzes and HRF amplitude. Although there are some cases with
low TPR value at high ROI size and HRF amplitude (5 spikes: 64 voXélartl.225 voxels/1.2%;

10 spikes: 27 voxelsf, 64 voxels/1.2%, and 216 voxels). On the other hand, the FPR images

show values lower than 0.12 for all cases.

TPR analysis on simulated data: FPR analysis on simulated data:
epileptic activity with 5 spikes epileptic activity with 5 spikes

ROl size (voxels)
ROl size (voxels)

0.5 0.75 1 1.’25 1.’5 1,’75 é 0.5 0.75 1 1.25 1.5 1.75 2
HRF amplitude above the baseline (%) HRF amplitude above the baseline (%)
TPR analysis on simulated data: FPR analysis on simulated data:
epileptic activity with 10 spikes epileptic activity with 10 spikes

ROl size (voxels)

@ 07
J]

5 0.6
2 14
(] 05
N L
0

)

o

0.5 0.75 1 1.’25 1.’5 1.75 é 0.5 0.75 1 1.25 15 175 2
HRF amplitude above the baseline (%) HRF amplitude above the baseline (%)

Fig.13- TPR(eft column)/FPR(right column) analysis on simulated datamong ROIs size and HRF amplitude abov

baseline Top row:simulated epileptic activity with 5 spikeBottom row: simulated epilgtic activity with 10 spikes.
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2.4 Discussion

This chapter describes a dadaven method that allows the detection of different temporal
patterns of transient BOLD activation in a single datdskas the advantage of being able to detect

this type of activity even in deep brain structusggh a high spatial resolution.

The results shown iffig.13 demonstrate that there is a higher probability of detecting epileptic
activity if the HRF amplitude above the baselmbigher than 1.25%, i.e., there are more cases with
high TPR when their epileptic activity have an HRF amplitude greater than 1.25%. The same line of
reasoning is valid for the ROIs sitzhe lack of consistency observied the casedhat have a TPR

clos to zero can be justified by the following fact

First, the simulated epileptic activity was added to BOLD activity already presented in the healthy
subject data.As analyzed ir2.2.2 Algorithm implementation - Candidate voxels selectiothe

thresholds for the selection of potential candidate voxels were defined for an average sensitivity
TPRgreater than 0.9, meaning thalmost all of voxels with the simulated aaty of interest were

selected. &er the selection of the voxels of interest, thod®t do not have activity of interest are

used to calculate the global time course that is, then, regressietfom allthety S 02 dzNB SQa @2 E &
CKA& a0GSLI A& I ONRGAOFE 2yS aiAyoS AdG OlFy AyRdzOS
simulated HRF amplitude initially added to the daiiso, the spikes of epileptic activity are added

with randomly chosen timing his can justifthe fact that some cases hatheir simulated epileptic

activity maslked by this global activitgecreasing the overall TPR value. It is also important to note

that independently of the TPR value the average iERRver than 0.12 for all@ses, indicating that

the t-maps chosen for each case do not describe substantial activation out of the ROIs boundaries.
Finally, thsinconsistency in the results does not allows to infer about the best frequency of stimuli

in order to have a higher TPR.

Second, an issuelatedto 2dTCA algorithm concertise assumption that RTCs represent different
sources of activation that do not have overlapping temporal profiles of activation. This means that
it is assumed that two time series whose maximum signahghoccursat the same timehave the
remaining temporal profile with similar shape. Therefore, concerning the resulESgh3, as the
simulated spikes are attributed to BOLD activity at random, if the maximum signal chatige of
simulated data has the same timing as other sosmfeactivationthen the simulated datavill be

masked.
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Nevertheless, it can be state that in order to have an increased likelihood of detecting BOLD epileptic

activity it is desirable that the corrpendent HRF hasieamplitude greater than 1.25%.

One issue concerning real data studies is related to epileptogenic HRFs when the noise level on the
time series is high. In that cases if that responseehlaw amplitude, the noise will mask it because

the algorithm will only map to the bdimensional histogram signal increases which are 2 standard
deviations above the baseline. Also, in these circumstances the noise amplitude may precede the
HRF amplitude. This issue is even more critical M scannerwith low magnetic field strength

due to smallelSNR (Yang et al. 2012)

Anotherdisadvantage of the 2dTCA is that usually a large number of RTCs are obtained and some
may result int-maps with significant brain activations not related to epileptic activity. Hence, in real
data studies, without soma prioriknowledge about the localization of the epileptogenic focus it is
difficult to select the right-maps. It is thereforémportant to follow strategies to classify, even in a
gualitatively way, the obtained maps with significant activatian.example of an exclusion criterion
AGQa ol aSR @nynhetby thfa? ysually igbeam restingstate dda, as the Default

Mode Network andVisual Networkon healthy(Fox et al. 2005; Cauda et al. 2030 epileptic
patients (Victoria L Morgan et al. 2008; Morgan et al. 2010; Morgan et al. 2@@i0ther way to
exclude nornteresting maps is to delimit the statistical analysis to brain regions which are

suspected to allagte the epileptogenic focus (clinical information).
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CHAPTER BIULTISCALE ENTROPY

3.1.Introduction

The early work on complexity analysis of physiological time series were based on entropy algorithms
(Andino et al. 2000; Richman & Moorman 2Q08hich quantifies the regularity of a time series.
However, the relationship between the increase or decrease of entropyiaam or high regularity

of a given time series is not always straightforward. For example, if a certain pathology is associated
with erratic fluctuations with statistical properties similar to uncorrelated ngilse assigned value

of entropy to that systm is high compared to a healthy system with correlated n@zesta et al.

2002) This is contra intuitive once it is expected that a healthy system has a higher entropy than
pathologic systen{Goldberger et al. 2002 he justification for this inconsistency could be in the
fact that these entropy algorithms are baken singlescale analysis and do not take into account

the complex temporal fluctuations imnent inhealthy and pathologic physiologic syste(@®sta et

al. 2002)

Therefore in order to respondto this shortcominga new method was developethking into
account multiple time scalesf analyzedtime series, named multiscale entropy (MSE) analysis
(Costa et al. 2002; Costa et al. 2Q0Bhismethod is based on the hypothasihat the ability of a
biologicd system to adapt and functionnoconstantly changing environment is a reflection of its
own multiscale complexity. Hence, a ration of this adaptive capacity, caused by disease states,

would be associated with a loss of complexity.

The procedures involved in calculating M¢$Scale 2 SRS S N S A T
can be summarized in the following steg LY k¥

. . . P n 7 A XX
(Costa et al. 2005First, a coarsgrained time M ¥2 ¥3 Yi= 5

series is constructedaccading to a scale ™€ 2 2 % %, % % ° % Xuxa °°

factor, as represented iRig.14. The length of :
) _ o o o = XX tXis o

each coarsgrained time series is equal to the N1 2 ! 3

hFig.léL Schematic illustration of the coarggaining procedur

. (Costa et al. 2005)
scale factor. Second, for each coagsained

length of the original time series divided by t

time series a measarof sample entropy is don&@he simple entropy is regularity statistievhich
searchedor patterns in a time series and quaidi$ its degree of predictabilityThus,it can be

defined by the negative natural logarithm of the conditional probabilityt thaataset of lengthN,
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having repeated itself within a toleranae(similarity factor) form points (pattern length), also
repeats itself form+1 points, without allowing selfmatches(Richman & Moorman 2000Finally,

the sample entropy profilés examinedver a range of scalé€osta et al. 2005)

InFig.15is represented a MSE analyésottom) White noise

to simulated white and coled (1/f) noise (Top) .l

As shown the entropy value for the coarse 2 |

grained 1/f series remains almost constant for all

r r r r r r r r r
0 50 100 150 200 250 300 350 400 450 500

scales, while for the coargrained white noise

1/f noise
0.02 T T T
time series monotonically decreases. This is |l
consistent with the fact that 1/f noise corits 7 °f
-0.01
complex structures across multiple sca{&sang - L
' 50 100 150 20? 250 ) 300 350 400 450 500
1991) Therefore, the statistical properties of Time Points
fluctuations are different in each scale since ne 25
information is revealed in all of thefCosta et al. [ )
20 ¢ 1/f noise
2005) U? E uuuuu S 20" * S S R N * R B R * R o R &
15 F
. . - White noise
Despite all the advantages described above, tl 0 i
technique has several limitations that need to t [
. . . . . 0.5 1 Il L 1 1
taken irto account. To provide reliable statistic 0 4 8 12 16 20

Scale factor
for the entropy measure on each scale the length
Fig.15 Top: Simulated whié and 1/f noisesBottom: MSE

of the original timeseries must be large enOnghanalysis of simulated whdt and 1/f noise time serie

about 10™ to 20" (Richman & Moorman 2000) adapted from(Costa et al. 2005)

This length definition is dependent on the level of accepted uncertainty. When dealing with EEG
time seies this limitation is not so restricted once typical length data reaches thousands of time
points. However, with BOLD time series, which typically have between 108artome points, this

issue could be an aggravating factor, limiting the factor scale low value. For example, if the
length of a time series is 100 time points than at a scale factor of 20 we have a-goairsd time
series with only 5 points, restricting the possible choicesnfgipattern length andr (similarity
factor) parametersand, therefore, making the sample entropy estimation unreliable. Thus, a

carefully examination on #separameters values are of extreme importance.

Studies on EEG signals have examined the use of several parameter valuespsathral=0.25
(Escudero et al. 2006n=2andr=0.15(Catarino et al. 2011jm=2andr=0.20(Mizuno et al. 2010;
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Takahashi et al. 2009; Takahashi et al. 20483 m=2 and r=0.50 (MclIntosh et al. 2013)while

studies on BOLD signals have found their optimal parameters values=h2 or 3and r=0.15

(Ferreira, Rocha, et al. 2012; Ferreira et al. 2@h8m=1andr=0.35(Yang, Huang, et al. 2013he
presentmethods used to evaluate this optimization are based on empirical approdtlaeg et al.

2013; Yangetal. 20bF RSY2yadN} dAy3a GKIFIG GKSNBQa y2 3Jdza RSf
values. Hereupon, the interpretation tfe MSE analysis output from BOLD signals must be careful

by taking imo accountthe following aspectsthe low time series lengthyhichlimits the choiceof

scale factorsand the sampling rate for multislice acquisitions, since the influence from egiir

YR OF NRA2@I 40dzf I NJ KSY2ReylYAOa OFlyQid oS dz2aGlffe
(TRF 2s) in fMR[Lowe et al. 1998)

Concerning the application of MSE analysis specifically to epilepsy, Ouyang and colleagues showed
that EEG signatsf ratsare more complex ineggzurefree state than in seizure state by performing a

MSE analysis in epileptic rgBuyang et al. 2009They demortsated thatthe MSE method is able

to classify epileptic EEG signals. Another study on humanBBE analysis was conducted by
Protzner and colleagues ifProtzner et al. 2010)They compared the epileptic and healthy
hippocampf) signal complexity through MSE analysis on iEEG signals based on the hgpbtites
patients with epilepsy have reduced variability on epileptogenic tisstensequentlyjt was
expected that the epileptogenic hippocampus sleaivlower MSE values than the healthy
hippocampus. The results suggested tha tinain signal variability could be a robust biomarker of
neuronal system integrity in patients with epilepsy. Finally, to thst leé my knowledge there are

no studies that applied MSE analysis to epileptic BOLD signals.

3.2 Materials and Methods

The MSE method implemented in this project is a modified version of the original appro@&xistd

et al. 2002) Throughout this section, the steps of the former, as well as, of the main differences
between the two approaches are explained in detail. The algorithm of the original approach can be
found at PhysioNg& (Goldberger et al. 2000)

3 PhysioNet: MSE original approach algorithrt://www.physionet.org/physiotools/mse/tutorial)
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3.2.1. Modified MSEAIlgorithm implementation

Timeseries coarsgraining
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Fig.16- Schematic illustration of theodifiedcoarsegraining procedurevhere a moving average is applied to the original
time-series for each scale factor. Adaptedrfi (Costa egl. 2005)

This algorithm bases its analysis on a@mensional timeseries and the first step is to perform a
coarsegraining @ the originaldata. The original approach, seéel Introduction, of (Costa et al.
2002)is limited for short timeseries, such as the case of typical BOLD time series, since the reliability
of statistics requiredor the sample entropy computation (seégample entropy computatioh is
severely compromised as the time series are further cograined and consequently shorter. In
order to overcome this shortcoming a new appcbavas developedTavares, SanteRibeiro, and
Ferreira, unpublished resultdlike in the original method, a set of coargained time seriewvere
created using a moving average of scale fa¢tome points, as represented #fig.16. Each poiny;

in the new time seriegsvasobtained throughEq.3.

W Eq.3

where x represents the point of the originaltime series, of length N, antithe scale factor. The
total length of each coarsgrained time series is given By W . With this approachit was
guarantea a larger number of scales in whitle sample entropy computatiowas provided by

reliable statistics.

Sample entropy computation
Once the coarsgraining proceswascompleted the next stepvasto compute the sample entropy

for each coars@rained time series. An illustration of how twsisaccomplished is represented in

26



960 |
860 |
760 |

660 | [ |

Amplitude (arbitrary units)

560 ©

0 4 8 12 16 20 24 28 32 36 40 44 48
Data point number (index)

Fig.17- lllustration of sample entropy computation. In this example, the pattern lemgténd the tolerance are 2anc

20, respectively. Dotted horizontal lines around data points u[1], u[2] and u[3] represent u[1] + r, u[2] = r, and
respectively. All green, red, and blue, points represent data points that match the data point u[l], u[2], ar
respectiely. Adapted fron{Costa et al. 2005)

Fig.17. Considering a time serias,the algorithm first defines a pattern of length, defined by the
user, and another of lengtm+1 Then, it searches for forward repetitions of each pattirrihe
time series and retain their number into two variablésand B, for m+1 and m pattern length,
respectively. A pattern is considered to match the template if the absolute difference between all
its elements is within a toleranee Thus, for the exmple depicted ifrig.17, considering the pattern
of lengthm=2 (green u[1f; red u[2]) and the correspondent pattern of lengtin+1=3 (green u[1f;
red u[2]¢ blue u[3]), the number of repetitions for each cas8 end2, respetively. This matching
analysis must be repeated for all possible templates of lengindm+1and in order to calculate
A and B, the number of repetitions for each case are sumopedFinally, the sample entropy
(SampEhitisgiven by the conditional pbability that two sequences that match each other for the
first m data points also match for the next poiiRichman & Moorman 200@nd iscomputed

throughEq.4.

= »

'" +D —Pﬁ’ i ERS Eq.4

Complexity Index Computation

The final step of this algorithmvasto compute the complexity index (Chiven by the sum of the
sample entropy over all scales, an approach similar to that present@taing, Huang, et al. 2013)
and (Ferreira et al. 2013Hereupon, a quantitative comparison between two different time series

could bemade in terms ofts complexity behavior.
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Optimal parameters choice

In the modified MSE algorithm there are two parameters that must be chosen by the user, the
pattern lengthm, and the similarity factor or tolerance In order to determine which pair of
parameters in,r) were the most suitable for shorter time series (with length arour@D-250time
points), a set of surrogate signals were created and compared in terms of theio€&slirogate
signals consistedfowvhite and 1/f noises, signals known to behave differgriti terms of its
regularity (seeFig. 15). The comparison made between these two signalsedirto find the
parameters values that give the highest difference, which is given by the anisotropy index (Al),
Eq.5.

L yE E
FEl «w 'i.. c U vm

Hereuponthe choice process consistefithe following steps. Firs0 000white Gaussian and/fl

noises time series (100 of each) were created using an intrinsic function of Matlab® and a function
created by(Little et al. 2007)respectively. Second, the sample entropy profile over scales 1 to 20
was computed for each time

Optimal Parameters Definition
series, and tB mean and Scoring Classification

standard deviation of the sample

entropy for each scale and each

noise type was calculated. Third,
the CI corresporidgto white and

1/f noises were computed in

Total Score

order to obtain the Al This
process was repeated fom
values of 2 and 3 andvalues of
0.1 to 0.5 times the standard

0
deviation of the Coarsgrained 005 01 015 02 025 03 035 04 045 05 055
r

time series being analyzed for

Fig. 18 Scoring classification for each possible pHiparameters (patter

entropy computation, in _ _
length- m, tolerance- r) with a tested m = 2 (light blue) and 3 (dark blue)

increments of 0.05. Forth, a SCOMy - 0.1t00.5in steps of 0.05. Each barespnts the total score attributed
is attributed to each pair ofthat case. The results showed that the optimal valuesrf@andr are 3 and 0.

parameters ifn,r) according to the times the standard deviation, respectively, with a total score of 67.
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following criteria: (i) the highescore value is defined has the total number of cases, irayalues

times 9r values that equals 18 total cases; (ii) the one corresponding to the highest Al is assigned
with the highest score; (iii) the next case with the highest Al is assignedheitiecond highest
score(e.g. 17) and so on, until no more cases remain. These four steps are repeated for original
time series lengths from 100 to 250 time points in increments of 50 time points, and the score of
each casen,r) is accumulated. Finallihe best case is selected as the one with dverallhighest

score. The results (sd€g.18) showed that the optimal values fon andr are 3 and 0.4 time the
standard deviation, respectivelwith a total score of 67. Theseluaswere used in the remaining

MSE analysis.

3.2.2. lllustratve examples

The following examples were reproduced for illustrative purposes.

Comparson betweensample entropy profilesof white and 1/f noiseobtained usingoriginal and
modified approachesFor ths example, 200 white Gaussian and 1/f noises time series (100 of each)
with 1 000 time points were created, in a similar way as described abov@.@ddodified MSE
Algorithm implementation). Second, the sample entropy profile over scales 1 to 20 was computed
for each time series, and the mean of the sample entr@@mputed withm=3 andr=0.4)for each

scale and each noise type was calculated. This process was adpesing the original and the
modified approaches and the sample entropy for each case was plotted on the same figure. The
main goal of this examplas to compare the sample entropy profiles originated from these two

approaches.

Comparison between samplentropy profilesof short white and 1/f noisetime seriesobtained
usingoriginal and modified approachesg-or this example, 200 white Gaussian and 1/f noises time
series (100 of each) with 100, 150, 200, and 250 time points were created, in a similas way
described above (se22.1Modified MSE Algorithm implementation). Second, the sample entropy
profile (computed withm=3 andr=0.4)over scales 1 to 20 was computi each time series, and

the mean of the sample entropy for each scale and each noise type was calculated. Third, the CI
correspondngto white and 1/f noises were computed. This process was repeated using the original
and the modified approaches. &main goal of this example vgato compare the sample entropy
behavior oer scales and its influence @hcomputation when used either of these two approaches

for short time series
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Comparison between sample entropy profilesd respective Cl ofvhite, 1/f and 1/f2 noise, and
sinusoidaltime seriesobtained using modified approach For this example, 300 white Gaussian,
1/f and 1/ (another type of noise also known as Brownian or red noise that corresponds to the
integration of the white noiseseeFig.19) noises time series (100 of each) with 250 time points
were created, in a similar way as described above (82l Modified MSE Algorithm
implementation). In addition to these signats/o sinusoidal time seriesreated from a Matlab®
intrinsic function withfrequenciesof 0.01 Hand 0.1 Hza sample frequency of 0.5 Hz ankkagth

of 250 time pointgseeFig.19), wasalso created in order to represent a periodic signal. The choice

of this length is justified by the maximum length of short time sesigrilated in the above example.

Sinusoid - 0.01 Hz
1 T T T T

a.u.

; ! !
0 50 100 150 200 250

Sinusoid - 0.1 Hz
1 T 7 T T

a.u.

L L L
0 50 100 150 200 250
1/f2 noise

a.u
o
2

[ [ [
0 50 100 150 200 250
Time points

Fig.19- Top:Sinusoidal time series with a frequency and s&niequency of 0.01 Hz and 0.5 Hz, respectively, and a length

of 250 time pointsBottom: 1/f2 noise time series with a length of 250 time points.

The sample entropy profilécomputed withm=3 andr=0.4)over scales 1 to 20 was computed for
each time seds, and the mean of the sample entropy for each scale and each noise type was
calculated.Then the Clcorrespondingto each signal type wasomputed.The main goal of this
example wa to compare the sample entropy behavior over scales @rdespondingd values

when usng a noisdike or periodic signal

30



3.3.Resllts

Comparison betweersample entropy profileof white and 1/f noises obtainedisingoriginal and

modified approaches.

Sample Entropy profile

—+— White noise
14l N —O— 1/f noise
' Original approach
\ Modified approach
1.2 .
1 [
c
(]
g_ 0.8
©
(99}
0.6
0.4r
0.2
O r r r r r r r r r r
0 2 4 6 8 10 12 14 16 18 20

scale factor t

Fig.20- Sample entropy profilécomputed with m=3 adi r=0.4)over scale for original time series of white (asterisk) and

1/f (circle) noises of length 1000 time points using the original (blue) and the modified (red) MSE algorithm.

Fig.20 shows the sample entropy profile for whignd 1/f noises using the original approagh
blue)and the modified approacfin red). The results demonstrate that sample entropy profile for
the original method is different for the two types of noise: a hffise time series have an
approximately flashape over scales, while a white noise time series decreases in a monotonic way.
Also, for scales 1 and 2 the values of entropyttierwhite noise time series are greater than those

for 1/f noise. However, as scdlereasesthose values become smalkbiian those forthe 1/f noise.

On the other hand, when using the modified version of the MSE algorithm both sample entropy
profilesmonotonicallydecrease and the entropy values for white noise time series are greater than

those for 1/f time series for bécales.

Lastly, for scale 1 the entropy value for both noises types are the same irrespectively of the MSE

approach used.
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Comparison between sample entropy profiled short white and 1/f noisetime seriesobtained

usingoriginal and modified approache

Sample Entropy profile: Cl distribution:
Original approach Original approach
2r 25-
—&— White noise
1.8 —©— Uf noise
100 time points O
16p 150 time points 201
L4k ! 200 time points )
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1.2f 15f
c
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£ 1 @) * ¥
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Sample Entropy profile: Cl distribution:
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Fig.21- Left: Sample entropy profile (computed with=3 andr=0.4)over scale for original time series of wh{gsterisk
and 1/f(circle)noises with lengths in the range of 100 to 250 time points, in increments,afdfgthe original Top) and
the modified Bottom) MSE algorithnRight:Cl distribution in function of time series lengtbrrespondent to the sample

entropy analysis presented &dft.
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Fig.21shows, on the left side, the sample eogry profile for white and 1/f noises using the original

approach, on top, and the modified approach, on bottom, for time series of length 100, 150, 200,

and 250 time points, in blue, red, green, and black, respectively. The results demonstrate that
sampleentropy profile for the original method have an instable behavior when compared to that

originated from the modified approach as the length of the noise time series becomes shorter.

t F NOHAOdzZE F NI @3> F2NJ G4AYS aSNASa neethod eompute Bampld  LI2 A Y (
entropy values with similar amplitude for white and 1/f noise time series over scales 3 to 20. This
phenomena is, also, observable on the right sidé-igf 21 where the difference between the ClI

values, ondor each type of noise time series,densecutivel\greater as the length of the times

series increases.

On the other hand, the sample entropy profiles and the corresponding CI valmesn stable over

a0l ftSa AYRSLISYRSy(fe aefmodifidivérsioh @ yicIMBSKE algnfttdny A (1 Qa dza
Comparison between sample entropy profilend respective Cl ofvhite, 1/f and 1/f? noise, and

sinusoidaltime seriesobtained usingmodified approach
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Fig.22- Left: Sample entropy profilécomputed withm=3 andr=0.4)over scale for time series of whife blue),1/f (in
red) and 1/ (in green)noises and sinusoidal signals of 0.01 Hz (in cyan) and 0.1 Hz (in Widtk)length of 250 time
points using the modified MSE algorithRigh: Correspondinglvalues for each signal type presentedeft. Clunite noise
=17.2; Gl noise= 8.1; GhZnoise= 3.8;Chinusoia0.01 H7= 32; Clinusoico.1 Hz= 0
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Fig.22 shows the sample entropy profile for white/f ind 1/f? noises, and sinusoidal signal using
the modified approachThe results demonstrate that sample entropy profile, computed using the
modified approach, for the three types of noise has a similar shape, monotonically decreasing, but
with lower oveall sample entropy values from white to 1/f and Zfoises, respectively. The
sinusoidal signaif 0.01 Hhave an almostflat sample entropy profile with lower values in the range
0.155 to 0.166Relatively to the 0.1 Hginusoidal signahe sample entopy is zero for all scales.

The corresponding CI values are 17.2, 8.1, 3.2, andO0 for white, 1/f, and 1/f2 noises and
sinusoidal signalof 0.01 Hz and 0.1 Heespectively.

3.4.Discussion

This chapter describes a complexity analysis method basedeosatimple entropy property of the

signal being analyzed over several scales, allowing the assessment and classification of the signal
structure. The main advantage of this algorithm is its ability of distinguish two signals with different
frequencydependerty behaviors, a feature with higrelevancewhen dealing with physiological

signals.

The results showmiFig.20for the original approach are consistent with those presente¢Costa

et al. 2002; Costa et al. 2005)incethe white noise does not have complex structures, as the scale
factor increase the coarsgrained time series tends to a fixed value, decreasing the sample entropy.
On the other hand, 1/f noise is characterized by having equal energy in all octaves of frequency
(Ward & Greenwood 200%hich mean that new information is given in each scale dhdrefore,

when analyzing the sample entropy profile over sa#ld/f noise itis nearly flat with a constant

value of entropy over scale.

For modiied version of the MSE method the resuiltsFig.20 show a different behavior of the
sample entropy over scale for the two types of noise. This can be justified by a combination of the
following factors. Back to the original dgtion of the sample entropy, this algorithm does not count

for self matches, reducing possible biasing. From this point of view, lower values of sample entropy
indicates more selsimilarity in a time seriefRichman & Moorman 2000However, in this version

of the MSE method, each coarggained time series is created using a moving average, implying an

overlapping of information used in el average. Therefore, when the sample entropy is computed
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