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RESUMO 

 

Epilepsia é considerada a mais importante doença neurológica crónica a nível mundial. Esta 

afeta mais de 50 milhões de pessoas de todas as idades, e dessa população apenas 70% dos 

casos são controláveis com fármacos anti-epiléticos. Dos restantes 30%, 10% beneficiam da 

ressecação cirúrgica da região responsável pela atividade epilética e os restantes 20% não 

conseguem controlar adequadamente as suas crises. De entre as razões que justificam o baixo 

impacto da cirurgia encontra-se o facto de se desconhecer, na maioria dos casos, o foco desta 

atividade elétrica anormal. Por isso, a deteção deste foco é importante tanto para o diagnóstico 

como para o controlo das crises. 

O foco epiletogénico é um conceito teórico, consistindo na descreve a região cerebral que é 

necessário remover para deixar o doente livre de crises. Este é caracterizado por dois tipos de 

atividade epiléptica: a ictal e a interictal. A primeira diz respeito à atividade elétrica gerada 

durante as crises epiléticas e a segunda à atividade gerada entre as crises. A primeira é 

caracterizada uma intensa descarga elétrica que pode ter uma duração até alguns minutos. Já a 

segunda forma de atividade epiletogénica é, normalmente, mais breve no tempo e não 

associada a manifestações comportamentais detetáveis. 

Os métodos atualmente utilizados no diagnóstico da epilepsia baseiam-se quer na deteção da 

atividade ictal, quer deteção da atividade interictal. Estes incluem a tomografia por emissão de 

positrões (PET, do inglês Positron Emission Tomography), a tomografia computorizada de 

emissão de fotão único (SPECT, do inglês Single Photon Emission Computed Tomography), o 

magnetoencephalografia (MEG), o eletroencefalografia (EEG), tanto de escalpe como 

intracraniana, e, por fim, a combinação entre o EEG e a imagiologia por ressonância magnética 

funcional (fMRI, do inglês functional Magnetic Resonance Imaging). Todas estas técnicas 

possuem diversas limitações: em termos de baixa resolução temporal (PET, SPECT) e espacial 

(EEG, MEG), utilização de radiação ionizante (PET, SPECT), de carácter invasivo (EEG 

intracraniano), e, também, pelas dificuldade técnicas e financeiras que advêm da 

implementação de equipamento (MEG, EEG/fMRI). De forma a ultrapassar algumas destas 

dificuldades, novos métodos de processamento de dados de fMRI do estado de repouso têm 

sido desenvolvidos. Estes têm em vista a deteção de atividade epiletogénica interictal. 

A partir de estudos recentes em doentes com epilepsia do lobo temporal (TLE, do inglês 

Temporal Lobe Epilepsy) foi elaborada a hipótese de que o foco epiletogénico apresenta um 

comportamento distinto do restante parênquima cerebral quer em termos de perfil temporal, 
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quer em termos da complexidade dos seus sinais dependentes do nível de oxigenação do sangue 

BOLD (do inglês Blood Oxygen Level Dependent, designação dada aos sinais provenientes da 

técnica fMRI). Em particular, diversos estudos de EEG/fMRI sugerem que a atividade interictal 

está associada a picos transientes nos sinais BOLD, apresentando estes, por conseguinte, um 

perfil temporal BOLD distinto da restante atividade cerebral. Adicionalmente, estudos recentes 

com EEG indicam que o tecido epiletogénico apresenta uma menor complexidade, em termos 

de perfil temporal, que o parênquima saudável. 

Com base nestas hipóteses, é possível aplicar uma análise de agregação temporal bi-dimensional 

(2dTCA, do inglês bi-dimensional Temporal Clustering Analysis) para identificar regiões cerebrais 

que possuam um perfil temporal semelhante. Desta análise espera-se que sejam encontrados 

diversos conjuntos de regiões com perfis temporais distintos, eventualmente incluindo os 

potenciais focos epiletogénicos. No entanto, a aplicação desta técnica isoladamente não é 

suficiente para identificar com segurança o foco da atividade epiletogénica. 

Para tal, uma avaliação da complexidade dos sinais BOLD correspondentes a essas mesmas 

regiões pode ser feita utilizando duas abordagens: uma baseada no nível de entropia do sinal e 

outra baseada nas propriedades fractais do sinal. Relativamente à primeira abordagem, o 

método utilizado para avaliar a dinâmica da complexidade foi a análise da entropia à multiescala 

(MSE, do inglês, Multiscale Entropy) desenvolvendo uma variante modificada do algoritmo 

original. Este baseia-se no cálculo da entropia do sinal BOLD ao longo de múltiplas escalas 

temporais. Na análise de sinais BOLD de origem epiletogénica postula-se que o tecido possua 

uma complexidade menor que o restante tecido saudável, possuindo, no geral, uma entropia 

mais baixa. 

Na segunda abordagem, o método utilizado para avaliar as correlações temporais de longo-

alcance (LRTC, do inglês Long Range Temporal Correlations) ou as propriedades fractais dos 

sinais BOLD é a análise de flutuações com remoção de tendência (DFA, do inglês Detrended 

Fluctuation Analysis). Este método baseia-se na análise da auto-afinidade do próprio sinal, isto 

é, analisa as autocorrelações do sinal ao longo das diversas escalas temporais. No caso da análise 

de sinais BOLD com origem epiletogénica postula-se que as LRTCs sejam mais fortes do que as 

LRTCs para sinais BOLD de tecido saudável. Isto porque num sinal periódico, como é o caso da 

atividade interictal, é de esperar observar uma autocorrelação maior do que num sinal com uma 

periodicidade mais baixa. 
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Esta combinação metodológica tem como objetivo fornecer um biomarcador para a 

identificação de tecido epiletogénico a fim de ajudar no diagnóstico, na monitorização e no 

tratamento da epilepsia. 

A demonstração da aplicabilidade desta metodologia na identificação do foco epiletogénico 

baseou-se na análise de três doentes, cada um com um tipo diferente de epilepsia: epilepsia do 

lobo temporal unilateral e bilateral e displasia cortical focal (FCDE, do inglês Focal Cortical 

Dysplasia Epilepsy). Em todos os doentes, foi identificada uma região cerebral, cujo sinal BOLD 

possui um comportamento temporal distinto, concordantes com a informação clínica. 

A análise feita aos doentes com epilepsia do lobo temporal identificou a origem da atividade 

epilética baseada na hipótese que os sinais BOLD do tecido epiletogénico possuem uma entropia 

menor que o restante parênquima cerebral. A análise de conectividade funcional aos focos 

encontrados revelou correlações positivas e negativas com outras regiões cerebrais associadas 

quer a possíveis redes criadas pelo foco epiletogénico, quer a outras redes cerebrais que 

normalmente aparecem em estudos fMRI de estado de repouso. 

Por outro lado, a análise feita ao doente com displasia cortical focal indicou como provável foco 

epiletogénico uma região cerebral que não corresponde à informação clínica da lesão displásica. 

No entanto, uma análise da conectividade funcional da região encontrada pelo método indicou 

que esta possui correlações fortes com a região da lesão. De facto, as hipóteses postuladas neste 

trabalho baseiam-se em estudos elaborados para pacientes com TLE, pelo que ainda não existe 

uma assinatura de complexidade associada aos sinais BOLD de origem em FCDE. Por 

conseguinte, propõe-se como trabalho futuro, um estudo de uma amostra de doentes com FCDE 

de modo a classificar os sinais BOLD das regiões cerebrais displásicas em termos da entropia 

(MSE) e das LRTC (DFA). 

Os resultados preliminares obtidos neste estudo abrem novas perspetivas para a utilização de 

dados fMRI no auxílio ao diagnóstico, monitorização e tratamento da epilepsia, principalmente 

na avaliação pré-cirúrgica. No entanto, existem alguns limites associados à metodologia que 

precisam ser melhorados. O primeiro diz respeito ao facto dos sinais BOLD variarem consoante 

os indivíduos estudados, as zonas cerebrais e as condições dos tecidos cerebrais: se são 

saudáveis ou patológicos. Ou seja, é expectável haver variação da frequência, amplitude e forma 

destes sinais. Ainda, há estudos que demonstram que a atividade interictal pode produzir tanto 

um aumento como um decréscimo da magnitude do sinal BOLD, ou até não ter efeito na mesma. 

Resumindo, cada caso de epilepsia é único e condicionado pelos fatores descritos acima e, 

portanto, assumir uma resposta homogénea para todos eles torna restrita a aplicabilidade deste 
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método. Por conseguinte, o método deve ser otimizado para cada indivíduo ou grupo de 

indivíduos. 

Concluindo, tanto quanto me é dado a conhecer, este trabalho foi o primeiro a combinar uma 

análise de agregação temporal de regiões cerebrais com a análise da complexidade dessas 

mesmas regiões utilizando dados do estado de repouso de ressonância magnética funcional. 

Além da contribuição deste trabalho relativamente à sua aplicação à epilepsia, a metodologia 

desenvolvida é igualmente válida para ser aplicada ao estudo da dinâmica dos sinais BOLD no 

geral, estudando, por exemplo, redes neuronais de estado de repouso em indivíduos saudáveis 

em termos do seu comportamento temporal e a nível da sua complexidade. 
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Epilepsia; foco epiletogénico; imagiologia por ressonância magnética funcional; análise de 

agregação temporal; análise de complexidade. 
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ABSTRACT 

 

Epilepsy is one of the most important chronic neurological disorders worldwide affecting more 

than 50 million people of all ages. Among these almost 20% of epilepsy cases are uncontrollable 

and have an unknown source of this abnormal electrical activity. 

The present methods for detection of the epileptogenic foci comprises positron emission 

tomography, single photon emission computed tomography, magnetoencephalography, 

electroencephalography (EEG) alone and EEG/functional magnetic resonance imaging (fMRI), all 

with limitations in terms of temporal and spatial resolutions. In order to overcome some of those 

limitation a new method using fMRI alone was developed based on the hypotheses that the 

epileptogenic focus shows Blood Oxygen Level Dependent (BOLD) temporal profiles distinct 

from the remaining brain parenchyma during interictal activity and that the epileptogenic focus 

BOLD signals show lower complexity than healthy parenchyma. 

Therefore, bi-dimensional temporal clustering analysis (2dTCA), a data-driven technique, was 

used to identify brain regions with similar temporal profiles. Then, the BOLD signals of these 

regions were assessed regarding complexity using a modified multiscale entropy algorithm and 

also detrended fluctuation analysis in order to identify which of those regions corresponded to 

epileptogenic tissue. 

In order to demonstrate the applicability of the developed method a sample of three epileptic 

patients were analyzed comprising three types of epilepsy: unilateral and bilateral temporal lobe 

epilepsies, and focal cortical dysplasia. The results showed that this method is able to detect the 

brain regions associated with epileptogenic tissue. The results also showed that the 

epileptogenic focus influences the dynamics of related brain networks. This could be a key factor 

in the applicability of this method to other epilepsy cases. 

Finally, new perspectives are envisioned concerning the use of this method in the medical care 

of epilepsy and in the study of other brain networks. 

 

KEYWORDS 

Epilepsy; epileptogenic focus; functional magnetic resonance imaging; temporal clustering 

analysis; complexity analysis. 
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CHAPTER 1. INTRODUCTION AND OBJECTIVES 

 

Epilepsy is one of the most important chronic neurological disorders worldwide affecting more than 

50 million people of all ages. Although 70% of the cases are treatable with anti-epileptic drugs and 

ƭŜǎǎ ǘƘŀƴ мл҈ ǿƛǘƘ ǎǳǊƎƛŎŀƭ ǘƘŜǊŀǇȅΣ ǘƘŜ ǊŜƳŀƛƴƛƴƎ нл҈ ŎŀƴΩǘ ŎƻƴǘǊƻƭ ǘƘŜƛǊ ǎŜƛȊǳǊŜǎΦ ¢Ƙƛǎ ƴŜǳǊƻƭƻƎical 

disorder brings an important impact on epileptic patients concerning discrimination, social stigma, 

and higher national healthcare costs. People with epilepsy can be targets of prejudice and the stigma 

of the disorder can discourage people from seeking treatment for symptoms and becoming 

identified with the disorder (WHO 2012). 

An epileptic seizure can be defined as a άtransient occurrence of signs and/or symptoms due to 

abnormal excessive or synchronous neuronal activity in the brainέ (Fisher et al. 2005). These brief 

electrical disturbances can have effects on sensory, motor, and autonomic functions, provoke 

changes in awareness or behavior, loss of consciousness, and convulsions. Uncontrolled epilepsy 

can also lead to depression, anxiety, and loss of cognitive function (Avanzini et al. 2013). 

The epileptogenic zone or focus is a theoretical concept corresponding to the brain volume that 

needs to be removed to render the patients seizure-free, i.e., it describes the abnormal cortex 

responsible for the generation of epileptic seizures. Thus, the cessation of seizures is accomplished 

with the complete resection of this area (Hamandi et al. 2005). This focus is characterized by two 

types of electrical activity, ictal which means during seizure, and interictal, which mean between 

seizures. The last one is normally more brief in time and is periodic (Ko et al. 2014). 

Hereupon, epileptogenic focus identification is important to epilepsy diagnostic and seizure control. 

The present methods for this purpose are based on Positron Emission Tomography (PET) and Single 

Photon Emission Computed Tomography (SPECT) (Mountz 2007; Kim & Mountz 2011), 

Magnetoencephalography (MEG) (Foley et al. 2014), Electroencephalography (EEG) alone 

(Hassanpour et al. 2004; Leal et al. 2007; Leal et al. 2008) and EEG/functional Magnetic Resonance 

Imaging (fMRI) analysis (Leal et al. 2006; Leite et al. 2013; Wang et al. 2012; Hamandi et al. 2005; 

Thornton et al. 2010)Φ ¢ƘŜǊŜΩǎ ŀ ǘǊŀŘŜƻŦŦ ƛƴ ǘŜǊƳǎ ƻŦ ǘƛƳŜ ŀƴŘ ǎǇŀǘƛŀƭ ǊŜǎƻƭǳǘƛƻƴǎ ŦƻǊ ŀƭƭ ǘƘŜǎŜ 

techniques (Fig. 1). The first technique is a direct measure of the Fluorodeoxyglucose (FDG) uptake 

in the brain based on the hypotheses that the cortical blood flow increases in the area of seizure 
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discharge (Mountz 2007). The second 

one works is a similar way, but with a 

different radiotracer (Tc-99m) (Kim & 

Mountz 2011). The main limitation of 

using PET and SPECT to localize the 

epileptogenic zone relies on specificity 

of abnormalities due to its limited 

spatial resolution and poor temporal 

resolution (Morgan et al. 2004; Clare 

1997). Furthermore, the need for a 

radiotracer is also a drawback, making 

this technique more invasive. 

The third and fourth techniques used to localize ictal and interictal electrical activity are MEG and 

EEG. There are two main modes of using the latter modality, scalp EEG (sEEG) and intracranial EEG 

(iEEG). Both of these modalities have high temporal resolution, allowing the detection of brief spikes 

ƻŦ ŜƭŜŎǘǊƛŎ ŀŎǘƛǾƛǘȅΣ ǎǳŎƘ ŀǎ ƛƴǘŜǊƛŎǘŀƭ ŀŎǘƛǾƛǘȅΦ IƻǿŜǾŜǊΣ ǿƘŜƴ ǊŜƎŀǊŘƛƴƎ ǘƘŜ ƴŜŜŘǎ ƻŦ ŀōƴƻǊƳŀƭƛǘƛŜǎΩ 

specificity for presurgical assessment, the spatial resolution of sEEG and MEG is poor. In order to 

improve the resolution of sEEG a high-density of electrodes is needed (Leal et al. 2007; Leal et al. 

2008). This issue can be overcome by iEEG, as the electrical signal is recorded directly from cortical 

ǘƛǎǎǳŜΦ ¢ƘŜ ƳŀƧƻǊ ŘǊŀǿōŀŎƪ ƻŦ ǘƘƛǎ ƭŀǎǘ ƳƻŘŀƭƛǘȅ ǊŜƭƛŜǎ ƻƴ ǘƘŜ ŦŀŎǘ ǘƘŀǘ ƛǘΩǎ ŜȄǘǊŜƳŜƭȅ ƛƴǾŀǎƛǾŜΦ 

Lastly, simultaneous EEG-fMRI is an emergent technique which combines the best of two modalities, 

high temporal resolution from EEG and high spatial resolution from fMRI. The strategy followed in 

this case is to continuously sample the interictal and ictal events while measuring the BOLD signal 

simultaneously with EEG. This is somewhat cumbersome as it requires a very specific and delicate 

setup, particularly for acceptable recording of the EEG. Otherwise it will bring several kinds of noise 

problems, including movements artifacts (Wang et al. 2012), compromising the feasibility of EEG-

fMRI studies. Another shortcoming associated with this technique, and with EEG alone, is that they 

ŀǊŜƴΩǘ ǎŜƴǎƛǘƛǾŜ ǘƻ ƛƴǘŜǊƛŎǘŀƭ ŜǇƛƭŜǇǘƛŦƻǊƳ ŀŎǘƛǾƛǘȅ ƛƴ ŘŜŜǇ ǎǘǊǳŎǘǳǊŜǎ ƳŀƪƛƴƎ ǘƘƛǎ ǘŜŎƘƴƛǉǳŜ ǳǎŜŦǳƭ 

only in patients with frequent interictal events recorded from the sEEG (Morgan et al. 2004; Lopes 

et al. 2012). To overcome some of the limitations described above and find a more suitable solution 

to localize a seizure onset, efforts are being taken to develop new processing methods using fMRI 

Fig. 1- Relative spatial and temporal sensitivities of different functional 

brain imaging methods. MEG: magnetoencephalography; sEEG: scalp 

electroencephalography; fMRI: functional magnetic resonance 

imaging; PET: positron emission tomography; SPECT: single photon 

emission computed tomography. Adapted from (Jezzard et al. 2001). 
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technique only (Yee & Gao 2002; Morgan et al. 2004; Hamandi et al. 2005; Morgan et al. 2008; 

Morgan et al. 2010). 

Another approach to epilepsy diagnosis and characterization of epileptic signals behavior has been 

recently taken on the complexity field. Some authors have been hypothesized that epileptogenic 

brain tissue has a different complexity than healthy brain tissue (Parish et al. 2004; Monto et al. 

2007; Protzner et al. 2010). A complete characterization of this complexity could lead to a definition 

of a physiological biomarker applicable to epilepsy, namely for diagnostic and monitoring of its 

treatment. For that purpose two main approaches can be used: a disorder level based (Ouyang et 

al. 2009; Protzner et al. 2010) or a fractal properties based (Parish et al. 2004; Monto et al. 2007) 

methods. In both of them it is expected that in the epileptogenic focus the complexity is lower 

because of its intrinsic periodic interictal electric activity. 

This thesis project will focus on the epileptic focus localization through fMRI BOLD signals and then 

on the complexity analysis of its time series. Therefore, in the next section the concepts inherent to 

this work will be described. 

 

1.1.  BOLD signal origin and fMRI analysis 

Functional magnetic resonance imaging (fMRI) is a powerful non-invasive tool that allows the study 

of the functional responses of the brain in a quantitative way. One advantage of using fMRI is the 

identification of brain activity due to a stimulus with a high spatial resolution (Jezzard et al. 2001).  

This technique is based on the 

hemodynamic response function 

(HRF) of the brain, which arises 

when a given stimulus is applied. 

The HRF is a transfer function of 

the neurovascular coupling 

characteristic of brain activation. 

When a stimulus acts on a 

particular region of the brain 

evokes, in that area, a change in 

blood flow. This facilitates 
Fig. 2- BOLD Signal Response to a brief stimulus. Adapted from (Jezzard 

1999). 
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glucose oxidation by providing more oxygen molecules. If there is an increased consumption of 

ƻȄȅƎŜƴΣ ǘƘŜǊŜΩƭƭ ōe an increased concentration of deoxyhemoglobin (dHb), a paramagnetic oxygen 

binding molecule. Oxyhemoglobin (oHb), on the other hand, is a diamagnetic molecule with a 

magnetic susceptibility smaller than that of dHB (Clare 1997). 

Therefore, a change in hemoglobin oxygenation leads to changes in the local distortions of a 

magnetic field applied, generating local field gradients and local changes of T2* in tissue the blood 

vessels. The measure of the T2* originate the BOLD signals (Jezzard et al. 2001), see Fig. 2. The brain 

hemodynamic response can be summarized in the following steps. When a brief stimulus acts, 

ǘƘŜǊŜΩǎ ŀƴ ƛƴƛǘƛŀƭ ŘŜŎǊŜŀǎŜ ƻŦ .h[5 ǎƛƎƴŀƭ ŘǳŜ ǘƻ ƛƴcrease of oxygen consumption (Fig. 2A). Then, the 

increased blood flow decreases the dHb concentration increasing the BOLD signal (Fig. 2B). Finally, 

a delay of the return to the initial blood volume level provokes a decrease of oHb, and a 

consequently increase of dHb reducing temporally the BOLD signal intensity (Fig. 2C). 

The output of fMRI is a set of volumes comprising the scans of 

the brain at successive times, usually named raw data. Each 

volume is divided in resolution dependent number of small 

elements, named voxels, in which the information of the 

correspondent brain region is stored. One of the goals of 

acquiring fMRI data is to perform a robust, sensitive, and valid 

analysis to detect brain regions that show increased signal 

intensity at the stimulus time. In other words, the aim of fMRI 

analysis is to identify which voxels have their signal 

significantly greater than the noise level (Clare 1997; Jezzard 

et al. 2001). A typical pipeline analysis, schematically 

represented in Fig. 3, includes a first step of raw data pre-

processing that usually includes, correction to time effects and 

to subject movement during the experiment, and data spatial smoothing to improve the signal to 

noise ratio. Additional steps, such as, data detrending, filtering and regressing out of nuisance 

covariates are often taken. The aim of this pre-process is to improve the detection of activation 

events. Then, a statistical analysis is performed to detect which voxels shows a response to the 

assessed stimulus. This step usually involves a model estimation, through a general linear model 

(GLM) based on convolution between the HRF and the stimulus temporal profile. Finally, in order to 

display the activation images, statistical confidence must be given to the results by inferring about 

Raw Data

Pre-processing

Statistical analysis

Inference and 
Presentation

Fig. 3- Steps involved in the processing of 

fMRI data. Adapted from (Clare 1997). 
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probability values. See Appendix A for more information about statistical analysis, inference and 

statistical maps presentation in fMRI. 

The assessment of a stimulus via a pipeline analysis as described above can be one of two types. 

The first one comprises a stimulus that has typically few time points of duration, and its analysis is 

usually named a block-related one. The second one, a transient stimulus with a short duration is 

used, whereby its analysis is named an event-related one (Josephs et al. 1997). In epilepsy, once the 

stimulus is usually a transient spike corresponding to interictal electric activity, the analysis 

described in the above pipeline of event-related type. 

Since no technique is free of shortcomings this one has several limitations too. One of them 

concerns the temporal resolution, which is limited by the profile of the hemodynamic response, and 

low signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), leading to high variance in the 

results. One way to overcome this last limitation is to repeat the stimuli more than once, decreasing 

variance in results (Jezzard et al. 2001). However, this is difficult to apply in epilepsy since the timing 

of the stimulus, interictal or ictal seizure activity, is random and uncontrollable (Morgan et al. 2007). 

 

1.2.  Epileptogenic focus localization 

As explained before, the timing of ictal and interictal activity in epilepsy is unknown and 

unpredictable. Therefore, an analysis bŀǎŜŘ ƻƴ ƳƻŘŜƭǎ ƛǎƴΩǘ ǎǳƛǘŀōƭŜ ǘƻ ƭƻŎŀƭƛȊƛƴƎ ǘƘŜ ŜǇƛƭŜǇǘƻƎŜƴƛŎ 

focus, since no assumptions about temporal profile of the stimuli can be made. Data-driven 

techniques have been developed to deal with such cases as they are model-free. Some examples of 

such methods are the following: principal component analysis (Sugiura et al. 2004; You et al. 2011), 

independent component analysis (ICA) (Rodionov et al. 2007), hierarchical clustering (Cordes et al. 

2002; Keogh et al. 2005), and fuzzy clustering (Somorjai & Jarmasz 2003; Wahlberg & Lantz 2000). 

When applied to fMRI datasets these methods result in a large number of components, which are 

hard to classify without spatial and temporal information (De Martino et al. 2007; Rodionov et al. 

2007). 

Another data-driven method developed in the past years is temporal clustering analysis (TCA) (Yee 

& Gao 2002; Gao & Yee 2003; Morgan et al. 2004; Hamandi et al. 2005). This is a one-dimensional 

algorithm that groups together time series to one single cluster with the same temporal profile 

based on a given criteria. This criterial could be, for example, the same maximum signal magnitude 
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timing or the same first signal magnitude increase, to one single cluster. A modification of the 

original TCA to a bi-dimensional method, two-dimensional temporal clustering analysis (2dTCA) 

(Morgan et al. 2007; Morgan et al. 2008), detects different BOLD responses, assumed to be from 

different sources. It allows the detection of more than one single cluster. Once obtained the 

temporal profile of the cluster, it is possible to perform an event-related fMRI analysis. 

Lƴ aƻǊƎŀƴΩǎ ǿƻǊƪ (Morgan et al. 2007; Victoria L Morgan et al. 2008; Morgan et al. 2010) the 

application of 2dTCA to epileptogenic focus localization is based on the hypothesis that interictal 

epileptic activity provokes a transient BOLD spike with a rate slower than that of BOLD images 

acquisition. This hypothesis was based on preview results of EEG-fMRI studies applied to temporal 

lobe epilepsy (Salek-Haddadi et al. 2006; Kobayashi et al. 2005; Federico et al. 2005; Bagshaw et al. 

2004). The main results of these works showed that interictal activity detected by EEG is associated 

with a BOLD signal change. 

 

1.3.  Complexity analysis 

The human brain has an inherent high complexity arising from the interaction of thousands of 

neuronal networks that operates over a wide range of temporal and spatial scales (Hutchison et al. 

2013). This enables the brain to adapt to the constantly changing environment and to perform 

mental functions. In pathologic brains this capacity of adaptation is often impaired, leading to 

ordered or random patterns of behavior. In case of epilepsy, the study of such complexity could help 

to understand how an epileptic brain functions. 

To assess brain complexity we can only observe the macroscopic output of brain function, such as 

via EEG and fMRI, where a signal change represents a response from millions of neurons, thus 

creating the need for robust methods to evaluate the complexity of signal from such techniques. 

These methods are usually based on one of two approaches: disorder level based or a fractal 

properties based. 

The first one comprises methods that are entropy-based, by quantifying the regularity or orderliness 

of a time series (Pincus 1991; Kurths et al. 1996; Andino et al. 2000; Richman & Moorman 2000). 

Entropy can be conceptualized has a measure of the degree of disorder of a given system and 

increases with the degree of irregularity, reaching its maximum in completely random systems, such 

as uncorrelated or white noise, and its minimum in completely ordered systems, such as a single 
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frequency sinusoid. Physiologic outputs usually exhibits a higher degree of entropy under healthy 

conditions than iƴ ŀ ǇŀǘƘƻƭƻƎƛŎŀƭ ǎǘŀǘŜΣ ŀǎ ǘƘŜȅΩǊŜ ŎƘŀǊŀŎǘŜǊƛȊŜŘ ōȅ ŀ ǎǳǎǘŀƛƴŜŘ ōǊŜŀƪŘƻǿƴ ƻŦ ƭƻƴƎ-

range correlations and loss of information (Goldberger et al. 2002). However, an increase in the 

entropy may not always be associated with an increase in dynamical complexity (Costa et al. 2002). 

One method that has been developed and improved in the past years and has been shown to 

effectively quantify the complex dynamics of biological signals is the multiscale entropy (MSE) (Costa 

et al. 2002). It is based on measuring the entropy over multiple time scales inherent in a time series. 

The second approach on brain complexity assessment relies on the evaluation of long-range 

temporal correlations (LRTC), which reflect the self-affinity of a given signal. The majority of 

quantifications methods such as spectral analysis and Hurst analysis (Peng et al. 1995) for the LRTC 

study are invalid to evaluate biological signals because, as they are complex and show fractal 

properties, their stationarity are not guarantee. Thus, a method capable of detecting the LRTC was 

developed in the past years to overcame the nonstationary problem of biological signals, named 

detrended fluctuation analysis (DFA) (Peng et al. 1994). 

 

1.4.  Thesis hypotheses and goals 

This master thesis project is based on the hypotheses that the epileptogenic focus shows a BOLD 

signal with a distinct temporal profile from the remaining brain parenchyma, either during ictal and 

interictal activity (Morgan et al. 2007; Victoria L Morgan et al. 2008; Morgan et al. 2010). Particularly, 

it is known that the interictal epileptic activity provokes a transient BOLD spike with a rate slower 

than that of BOLD images acquisition (Salek-Haddadi et al. 2006; Kobayashi et al. 2005; Federico et 

al. 2005; Bagshaw et al. 2004). This makes possible the application of a method for the localization 

of the epileptogenic focus, the 2dTCA. 

Furthermore, it is well-known, from epileptic EEG signal studies, the periodic behavior of epileptic 

activity of epileptogenic brain regions (Parish et al. 2004; Monto et al. 2007; Protzner et al. 2010). 

Indeed, in these EEG studies it was shown that the epileptogenic focus EEG signal shows lower 

complexity than healthy parenchyma. However, there are no studies showing the same results with 

epileptic BOLD signals. Therefore, for the purpose of this thesis project it is hypothesized that the 

epileptogenic focus BOLD signals shows lower complexity than healthy parenchyma. Also, this 

complexity can be assessed by methods like MSE and DFA. 
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Summarizing, the innovation of this work is to explore the complexity properties of epileptic BOLD 

signals through the application of an algorithm that localizes the epileptogenic focus and extracts 

its BOLD signal. The main aim is to provide a definition of a biomarker for epileptic tissue 

identification in order to help on the diagnostic, monitoring and treatment of epilepsy. 

Hereupon, this thesis project have three main goals. First, the algorithms referred above, the 2dTCA, 

the MSE, and the DFA, will be implemented in Matlab®1 language using the commercial software 

package Matlab® R2014a. All of these methods will be optimized for BOLD signals analysis using 

simulated data. Second, a study with a sample of epileptic patients will be carried out by first 

localizing potential epileptogenic foci with 2dTCA and analyzing complexity of its BOLD signal in 

order to compare with those of healthy brain parenchyma. Third, based on the hypotheses stated 

above, the most likely epileptogenic focus will be chosen.  

                                                           
1 The MathWorks Inc., Natick, MA, 2000 (http://www.mathworks.com/) 
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CHAPTER 2. BI-DIMENSIONAL TEMPORAL CLUSTERING ANALYSIS 

 

2.1.  Introduction 

TCA was firstly introduced by Liu and colleagues with a pioneer work where this method was used 

to study the temporal response of the brain after eating (Liu et al. 2000). The problem addressed by 

ǘƘƛǎ ŀǇǇǊƻŀŎƘ ǿŀǎ ǘƘŜ ŦŀŎǘ ǘƘŀǘ ǘƘŜǊŜΩǎ ƴƻ ƳƻŘŜƭ ŀǎǎǳƳǇǘƛƻƴ ǘƘŀǘ Ŏŀƴ ōŜ ǘŀƪŜƴ ǘƻ ŜǎǘƛƳŀǘŜ ǿƘƛŎƘ 

brain regions will be activated after eating, once the activation timing is unknown. This algorithm 

ǎŜŀǊŎƘŜǎ ŦƻǊ ǘƘŜ ƳŀȄƛƳŀƭ ǊŜǎǇƻƴǎŜ ƛƴ ŜŀŎƘ ǾƻȄŜƭΩǎ ǘƛƳŜ ǎŜǊƛŜǎ ŎƻƴǾŜǊǘƛƴƎ a four-dimensional data, 

characterized in terms of space and time, into a simple relationship between the number of voxels 

reaching maximum signals and the time, named histogram. A concept of brain parcellation that 

accounts for timing and connectivity was accomplished for the first time with the results of this 

work. 

In order to improve the brain 

activations timing detection Yee 

and Gao modified the sensitivity 

of TCA algorithm basing the 

method on the integrated signal 

intensity of a temporal cluster at 

each time point (Yee & Gao 2002; 

Gao & Yee 2003) rather than only 

on the size of a temporal cluster 

(Liu et al. 2000). In other words, 

in the modified algorithm a 

condition is superimposed 

limiting the maximum signal 

change allowed to be clustered. 

The results of Yee and Gao work 

show that, despite the fact that 

the modified TCA is more 

sensitive than the original one, 

neither of them could detect 

Fig. 4- Results from an epileptic patient with unknown focus localization. a: 

activation map of peaks determined with TCA; b: histogram output from TCA; 

c: response of the voxel indicated by the arrow (dotted line) with modeled 

BOLD response time course (solid line). Adapted from (Morgan et al. 2004). 
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peaks smaller than the noise level. This opened a window to novel problems, like time shift and 

movement artifacts, that needed to be addressed before the TCA application. 

The application of TCA to epileptogenic focus localization was first addressed by Morgan and 

colleagues in (Morgan et al. 2004) under the hypothesis that the timing of interictal activity could 

be determined using TCA on resting fMRI data. Then, activation maps created by event-related fMRI 

analysis using the discovered discharges timings could be determined to show which brain regions 

are presumably part of the epileptogenic focus. The result from an epileptic patient with unknown 

focus localization is shown in Fig. 4. It shows the histogram output from the TCA (Fig. 4b), the results 

of statistical analysis (Fig. 4a), and fitted and adjusted responses of one voxel pertaining to the found 

cluster (Fig. 4c). The fact that the TCA defines one single histogram, i.e., one single cluster, implies 

that voxels spatially distant may be grouped together (as seen in Fig. 4). Whether this detected 

cluster temporal profile is a representation of the epileptogenic focus or instead a mixture of 

ǎƻǳǊŎŜǎ ŎŀƴΩǘ ōŜ ŀǎǎŜǎǎŜŘ ŀƴŘΣ thereforeΣ ǘƘŜ ŜŦŦŜŎǘƛǾŜƴŜǎǎ ƻŦ ¢/! ŎŀƴΩǘ ōŜ ŀǎǎŜǎǎŜŘ ŀǎ ǿŜƭƭΦ 

 

Fig. 5- Statistical maps from a subject with epilepsy obtained with models derived from TCA and from EEG. Adapted from 

(Hamandi et al. 2005). 

Hamandi and colleagues assessed the TCA performance by implementing and evaluating it, as 

described in (Morgan et al. 2004), using fMRI data acquired with simultaneous EEG in patients with 

clearly defined focal epilepsy and frequent interictal discharges (Hamandi et al. 2005). They 

demonstrated that the temporal clusters found were closely correlated with motion events, and not 

interictal epileptic activity, refuting the validity of using these as onsets in statistical analysis. In 

order to illustrate this issue, ǘƘŜǊŜΩǎ ŀ ǊŜǎǳƭǘŀƴǘ ǎǘŀǘƛǎǘƛŎŀƭ ƳŀǇ ŦǊƻƳ ŀƴ ŜǇƛƭŜǇǘƛŎ ǇŀǘƛŜƴǘ is present 
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in Fig. 5. It represents the activated brain region found with models in which the onsets were derived 

either from TCA and EEG. As it can be seen those regions does not match with each other, contrary 

as expected, suggesting that there may be a confounding with motion events when performing TCA. 

Hamandi et al. work brought new insights about the limitations of using TCA applied to epilepsy, 

suggesting that in order to improve this methodology there is the need to primarily separate the 

noise from the stimuli source and then compare the performance of TCA with other method such 

as ICA, for example. 

Morgan and colleagues posterior work (Morgan et al. 2007; Morgan et al. 2008) brought a new 

approach to this area by modifying the TCA methodology and overcoming some of the shortcomings 

described above. They developed a two-dimensional TCA technique addressing the problem of 

motion and physiological noise by detecting and sorting out separate BOLD responses assumed to 

be from different sources. This was based on the assumption that BOLD signal changes due to 

spontaneous interictal activity may be relatively small compared to those of noise, motion, and 

other activity and are expected to be only slightly slower than the rate of image acquisition (Morgan 

et al. 2008). Furthermore, as the shape of this BOLD signal response is well known it allows the 

application of the 2dTCA. 

Briefly, in Fig. 6 is depicted a graphical representation of how 2dTCA works and a comparison with 

TCA. The 2dTCA algorithm will construct a bi-dimensional histogram where columns represent 

temporal clusters with different temporal profiles. The criterion of grouping time series to different 

clusters is based on the first time point at which the first signal increase occur, instead of grouping 

with maximum signal criteria (Liu et al. 2000; Yee & Gao 2002; Gao & Yee 2003; Morgan et al. 2004; 

Hamandi et al. 2005). This assumes that different sources of activation will not have overlapping 

timing of BOLD response at the beginning of the time series, which is not proven to be in that way. 

Supposing that in a functional dataset there are four ǾƻȄŜƭǎΩ ǘƛƳŜ ǎŜǊƛŜǎ ǿƛǘƘ ŘƛŦŦŜǊŜƴǘ temporal 

profiles (Vox 1 to 4 in Fig. 6), using 2dTCA Vox 1 and 2 were grouped together in the same histogram 

column, representing a reference time course of one cluster. On the other hand Vox 3 and 4 will be 

are grouped together in another column, representing another and independent reference time 

course of a different cluster. If, for example, one group of voxels represent an epileptogenic focus 

and another a noising source, such as movement, this algorithm could rule out the latter by sorting 

ŘƛŦŦŜǊŜƴǘ ǎƻǳǊŎŜǎ ƛƴ ŘƛŦŦŜǊŜƴǘ ŎƭǳǎǘŜǊǎΦ LŦ ŀ ¢/! ŀǇǇǊƻŀŎƘ ǿŜǊŜ ǘŀƪŜƴΣ ŀƭƭ ǘƘŜ ǾƻȄŜƭΩǎ ǘƛƳŜ ŎƻǳǊǎŜǎ 

ǿƻǳƭŘ ōŜ ƎǊƻǳǇŜŘ ǘƻƎŜǘƘŜǊ ƭŜŀŘƛƴƎ ǘƻ ǘƘŜ ƛŘŜƴǘƛŦƛŎŀǘƛƻƴ ƻŦ ōǊŀƛƴ ǊŜƎƛƻƴǎ ǘƘŀǘ ŀǊŜƴΩǘ ǊŜƭŀǘŜŘ ǘƻ 

epileptogenic tissue, similar to what was described in (Hamandi et al. 2005), see Fig. 5. 
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Fig. 6- Graphical depiction of the TCA and 2dTCA algorithms showing how multiple reference time courses are created by 

the 2dTCA algorithm when multiple different voxel time courses are present in the data (Morgan et al. 2008). x represents 

ǘƘŜ ǘƛƳŜ Ǉƻƛƴǘ ŀǘ ǿƘƛŎƘ ǘƘŜ ǾƻȄŜƭΩǎ ǘƛƳŜ ǎŜǊƛŜǎ ƛǎ ƳŀȄƛƳǳƳΦ ȅ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ǘƛƳŜ Ǉƻƛƴǘ ŀǘ ǿƘƛŎƘ ƻŎŎǳǊǎ ŀ ǎƛƎƴƛŦƛŎŀƴǘ ǎƛƎƴŀƭ 

increase on the time series. 

In MorƎŀƴ ŀƴŘ ŎƻƭƭŜŀƎǳŜǎΩ ǿƻǊƪ (Victoria L Morgan et al. 2008), the performance of 2dTCA was 

assessed, in terms of specificity and sensitivity, by comparing it with the performance of TCA and 

ICA applied to the same simulated data, where a well-known activations were defined (Morgan et 

al. 2008). The results showed that 2dTCA algorithm can detect more than one independent 

reference time course, or equivalently more than one temporal cluster, more effectively than TCA, 

but slightly less effectively than ICA. However, they argued that as the 2dTCA algorithm will cluster 

only transient spikes, while decreasing sensitivity to signals of other temporal characteristics, the 

large number of components determined with ICA would make it difficult to determine the 

components of interest in vivo when the activation regions are not known. This confirms the 

advantage of using the 2dTCA as a data-driven for identifying the epileptogenic focus. 

x 

y 
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As a final remark about the application of 2dTCA on healthy subjects and epileptic patients, more 

recent work have demonstrated that this algorithm can also be used to detects clusters associated 

with the default-mode network (DMN) (Morgan et al. 2007; Morgan et al. 2008; Morgan et al. 2010; 

Pizarro et al. 2012) in healthy (Cauda et al. 2010; Fox et al. 2005)and epileptic subjects and with 

specific regions, such as the visual, auditory, and motor cortices, through external stimuli with 

known timing (Morgan & Gore 2009). 

 

2.2. Materials and Methods 

2.2.1. Simulated Dataset Characterization 

 

Fig. 7- Depiction of the two regions in which the epileptic activity was simulated. A) 216 voxels cubic regions located at 

the left temporal lobe. B) 216 voxels cubic regions located at right frontal lobe. In each frame, A) and B), the top left, top 

right, and bottom left images represent a sagittal, coronal and transverse view, respectively. 

A simulated dataset was created, according to the pipeline presented in (Khatamian et al. 2011), 

from a preprocessed rest fMRI healthy subject scan (see Appendix B for more details of this subject 

data acquisition) by adding simulated BOLD signals in order to create simulated epileptic activity. 

For this purpose two regions of interest (ROI) were defined (see Fig. 7), one in the left temporal lobe 

(LTL) and the other in the right frontal lobe (RFL), to which simulated epileptic activity was added. 

BOLD signals representing this type of activity were created by convolving the HRF with a spike train 

containing the timing of each event (see Fig. 8) and added to the BOLD signal already presented in 

each ROI. The final goal was to obtain simulated data with all combinations of the following 

characteristics: 5 and 10 spikes randomly distributed in time, correspondent to LTL and RFL ROIs, 

respectively; simulated activation ŀƳǇƭƛǘǳŘŜǎ ƻŦ лΦр ǘƻ н҈ ƛƴ ƛƴŎǊŜƳŜƴǘǎ ƻŦ лΦнр҈Τ ŀƴŘ whLΩǎ ǎƛȊŜ ƻŦ 

27, 64, 125, and 216 voxels. Within a ROI the activation frequency and amplitude is homogenous. 

Each simulation was repeated two times resulting in a total of 56 simulated datasets.  
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Fig. 8- BOLD signal created by the convolution of the HRF with a spike train containing the timing of each event (Top) and 

its addition to the BOLD signal already presented in the real data (Bottom). 

2.2.2. Algorithm implementation 

The 2dTCA algorithm implemented in this thesis project is based mainly on (Morgan et al., 2008) 

work with some modified steps based on (Khatamian et al. 2011) and another additional original 

steps. 

fMRI Data pre-processing 

Concerning fMRI data, some pre-processing steps are expected before the beginning of the 2dTCA 

algorithm itself. Namely, slice timing correction for effects due to interleaved acquisition, 

realignment for correction of motion effects, spatial smoothing, detrending (an additional step not 

performed in (Morgan et al. 2008; Khatamian et al. 2011)), and temporal filtering. The type of filter 

used in this last step was a bandpass filter containing the frequencies expected in BOLD response 

(Glover 1999), instead of a 3-point averaging filter used in (Morgan et al. 2008).  

Data transformation 

Each functional data series was formatted into M one-dimensional arrays corresponding to the M 

analyzed voxels of the dataset. In other words, each array contained ǘƘŜ ǾƻȄŜƭΩǎ ǘƛƳŜ ǎŜǊƛŜǎ ǿƛǘƘ N 

time points, given by the number of volumes of each raw data. The next steps were performed on 

this data. 
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Baseline definition and percent change computation 

! ŘŜŦƛƴƛǘƛƻƴ ƻŦ ǘƘŜ ōŀǎŜƭƛƴŜ ǾŀƭǳŜ ŀǎ ǘƘŜ ŀǾŜǊŀƎŜ ƻŦ ǘƘŜ ŦƛǊǎǘ р ǘƛƳŜ Ǉƻƛƴǘǎ ƻŦ ǘƘŜ ǾƻȄŜƭΩǎ ǘƛƳŜ ŎƻǳǊǎŜ 

as in (Morgan et al. 2008), implies an assumption that the subject is at baseline during that time, 

which may not be true. Therefore, a k-means technique was used such that ŜŀŎƘ ǾƻȄŜƭΩǎ ǘƛƳŜ ǎŜǊƛŜǎ 

was separated into three clusters: one with high values, another with low values, and the last one 

with the remaining middle values, see Fig. 9 .  This differs from the two clusters used in (Khatamian 

et al. 2011) whereas it was assumed that the BOLD response can represent an activation, an increase 

in amplitude, or a deactivation, a decrease in amplitude (Pittau et al. 2013). Thus, once we want the 

baseline of the signal without activation, the mean of the middle cluster was used to estimate the 

baseline. 

 

Fig. 9- Example of the three baselines (one corresponding to the mean of each cluster) estimated from k-means technique. 

The scale at the right represents the percentage signal change computed with the baseline corresponding to the mean of 

the middle cluster. 

The percent signal change was then determined according to Eq.  1. 

╟▄►╬▄▪◄ ╬▐╪▪▌▄ Ϸ
▀╪◄╪╫╪▼▄■░▪▄

╫╪▼▄■░▪▄
 Ϸ  Eq.  1 

The remaining analysis was performed on this percent change data. 

Candidate voxels selection 

All voxels expected to contain BOLD responses to spikes were identified. For this purpose, two types 

of limits were defined: one related to the range within which the maximum BOLD signal is allowed 

to change and another corresponding do the classification of a spike as a transient spike. 
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For the first one, lower boundaries of maximum signal change from 0 to 2 % in increments of 0.5 % 

and upper boundaries of minimum signal change from 3 to 11 % in increments of 1 % were tested 

on the simulated dataset. The goal of this test is to find the best combination of boundaries that 

allows the selection of a maximum BOLD signal change of interest, but rejects the maximum signal 

changes due to other sources, such as noise artefacts. 

For the second one, the test were run for thresholds in the range of 0 to 2 standard deviations above 

the baseline in increments of 0.5. The most suitable set of parameters were chosen as that which 

gives the minimum average false positive rate (FPR), i.e., the best average specificity, across all 

simulated data with an average true positive rate (TPR), i.e., average sensitivity, greater than 0.9, a 

method similar to that used in (Khatamian et al. 2011). This limits were found to be 0.5 and 3 % as 

lower and upper boundaries, respectively, and 2 standard deviations above the baseline as the 

threshold for transient spike classification, see Fig. 10, with a TPR equal to 0.98 and a correspondent 

FPR equal to 0.59 and an area under the curve equal to 0.62. 

 

Fig. 10- Average sensitivity/specificity analysis for thresholds definition of candidate voxels selection step. Keeping the 

average sensitivity above 90 %, the best average specificity (red circle) was found for up and low boundaries of 3 and 0.5%, 

respectively, and a threshold of 2 standard deviations above the baseline with a TPR equal to 0.98 and a correspondent 

FPR equal to 0.59. The area under the curve is equal to 0.62. 

Hereupon, if a voxel maximum signal change value was within that limits, the voxel was considered 

for cluster analysis. Otherwise the voxel was considered as a global one if its maximum signal change 

was under the lower signal change boundary or excluded of the analysis if its maximum signal 
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change was above the upper signal change boundary. Next, a global time course was determined as 

the average of all global voxels and regressed out of data. 

Event detection and 2D histogram mapping 

A two-dimensional map, hist2d, was created in an N by N matrix by incrementing the values in the 

following manner for all M voxels. For each time point: 

▐░▼◄ ▀●ȟ◐
▐░▼◄ ▀●ȟ◐ ȟ░█ ╜░◐ ◄▐►▄▼▐▫■▀

▐░▼◄ ▀●ȟ◐ ȟ░█ ╜░◐ ◄▐►▄▼▐▫■▀
 Eq.  2 

where threshold corresponds to the limit at which an event is considered to occur in that Mi ǾƻȄŜƭΩǎ 

time course and is equal to 2 standard deviations above the baseline of that voxel; and x is equal to 

the time point y at which the vƻȄŜƭΩǎ ǘƛƳŜ ǎŜǊƛŜǎ ƛǎ maximum. Therefore, the x-axis of hist2d is the 

time of the maximum signal increase and the y-axis is the time at each significant signal increase of 

the time series. 

The result of this 2D histogram consisted of columns that represents individual histograms of 

significant increases for those voxels whose maximum signal increase occurred at time point x (see 

Fig. 6). These histograms were named reference time courses (RTCs). 

RTCs number reduction and its normalization 

After the 2D histogram filling a very important step was to analyze which RTCs are truly unique, i.e., 

which ones describe activity temporally distinct from each other. Voxels can have temporal 

behaviors closely similar, but with slight variations in their time courses that could lead to different 

peak timings. Therefore, the number of RTCs were reduced in two steps. 

First, a correlation coefficient was computed between each pair of RTCs in order to compare the 

time course of all RTCs to one another and those with a value above a given threshold are summed. 

The second step of grouping RTCs was performed by comparing their activity and by grouping those 

that share activity in time at a given percentage. As shown in Fig. 11, first, the mean of each w¢/Ωǎ 

time course was defined as a threshold above which the RTC is considered to have a spike of 

activation (see corresponding whitelists in Fig. 11B). Second the amount of shared activity between 

the two RTCs was computed and if this value were equal or above a given percentage, the RTCs 

were summed. 
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To test which threshold value (of the first step) 

and percentage (for the second step) are the best, 

a range from 0.1 to 0.9 in increments of 0.2 and 

10 to 90 % in increments of 20 % were tested on 

the simulated data, respectively. The 

performance of each threshold was evaluated by 

ŀƴŀƭȅȊƛƴƎ ŜŀŎƘ w¢/Ωǎ t-map, thresholded at t>3.1, 

(see t-maps creation) individually, choosing the 

two ones which best describe the two ROIs (the 

regions where simulated epileptic activity was 

created), and computing the correspondent TPR 

as the ratio between the number of voxels 

activated in the ROIs and the size, in voxels, of 

those. The best set of parameters was chosen as 

that which gives the lower number of resulting 

RTCs, i.e., groups together more RTCs, with a 

reasonable average TPR, a criterion similar to that 

used in (Khatamian et al. 2011). This average is 

simply the mean of the TPR of all simulated data.  

Hereupon, as the first step was independent from the second one, the correlation coefficient 

threshold was firstly defined. The analysis, shown in Fig. 12, demonstrate that the sensitivity reaches 

its maximum for a threshold of 0.7 with an average TPR and a corresponding FPR of 0.52 and 0.06, 

respectively, and an average of RTCs number of 19, then it starts to decline. Regarding the second 

step threshold, it was defined by fixing the first parameter equal to the best value found, i.e., 0.7, 

as this steps follows the first in the algorithm. The results showed that after performing the 

correlation coefficient grouping step, the influence of the second step in the results is negligible, 

i.e., the number of resultant RTCs as well as the TPR remains similar to that values corresponding to 

a correlation coefficient threshold of 0.7. Therefore, the limit chosen for the second grouping step 

was 0.7 with an average TPR and a corresponding FPR 0.06, respectively, of 0.52 and an average of 

RTCs number of 19, as it performs the highest grouping of RTCs with a similar sensitivity as that for 

the first step. 

! 

. 

RTC 1 
RTC 2 

Fig. 11- Illustration of the second step of grouping RTCs. It 

is based on the percentage of shared activity between two 

RTCs. A: Temporal profile of two hypothetic RTCs. B: binary 

representation of each RTC spike above the mean, where 

the white color represents activations. 

RTC 1 share 90% of its 
activation with RTC 2 
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Once the final RTCs are defined, they were normalized by subtracting their mean and dividing by 

their standard deviation. 

 

Fig. 12- Average sensitivity/#RTCs analysis for correlation coefficient (Top) and shared activity (Bottom) threshold 

definition of RTC grouping step. Optimal parameters for correlation coefficient and shared activity threshold were both 

defined as 0.7 with a correspondent average TPR  and FPR and an average of RTCs number of 0.52, 0.0632 and 18.8 for 

the first threshold and 0.518, 0.0628 and 18.9 for the second threshold, respectively. 

t-maps creation 

The RTCs were finally passed, along with the nuisance variables (the global time course and motion 

correction parameters), as regressors to the GLM. In order to obtain the correspondent t-maps all 

regressors were incorporated as contrasts and tested for individual effect (see Appendix A for more 

details). This processing step was performed with the software package SPM2. 

2.2.3. Performance analysis of simulated dataset: sensitivity analysis 

Once all thresholds were defined it was important to assess the performance of each simulated 

dataset in order to determine the most suitable epileptogenic BOLD activity characteristics for 

2dTCA input. This evaluation was accomplished by running the 2dTCA algorithm to each simulated 

data (see 2.2.1 Simulated Dataset Characterization) using the parameters defined above and 

computing the average TPR and FPR for each case in a similar way as in 2.2.2 Algorithm 

implementation - RTCs number reduction and its normalization. 

                                                           
2 Statistical Parametric Mapping (http://www.fil.ion.ucl.ac.uk/spm/) 
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2.3. Results 

The Fig. 13 shows the results of the TPR/FPR analysis to assess the performance of the 2dTCA 

algorithm in detecting the several forms of simulated epileptic activity. The top and bottom rows of 

the figure show the following TPR and FPR values for simulated epileptic activity with 5 and 10 

spikes, respectively, information of the size of the ROIs and the HRF amplitude above the baseline. 

By inspection of the TPR images, it is observed that the TPR values have a tendency to increase 

towards the increase of both the ROIs sizes and HRF amplitude. Although there are some cases with 

low TPR value at high ROI size and HRF amplitude (5 spikes: 64 voxels /1.5 % and 125 voxels/1.25 %; 

10 spikes: 27 voxels/2 %, 64 voxels/1.25 %, and 216 voxels/2 %). On the other hand, the FPR images 

show values lower than 0.12 for all cases. 
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2.4. Discussion 

This chapter describes a data-driven method that allows the detection of different temporal 

patterns of transient BOLD activation in a single dataset. It has the advantage of being able to detect 

this type of activity even in deep brain structures with a high spatial resolution. 

The results shown in Fig. 13 demonstrate that there is a higher probability of detecting epileptic 

activity if the HRF amplitude above the baseline is higher than 1.25%, i.e., there are more cases with 

high TPR when their epileptic activity have an HRF amplitude greater than 1.25%. The same line of 

reasoning is valid for the ROIs size. The lack of consistency observed for the cases that have a TPR 

close to zero can be justified by the following facts. 

First, the simulated epileptic activity was added to BOLD activity already presented in the healthy 

subject data. As analyzed in 2.2.2 Algorithm implementation - Candidate voxels selection the 

thresholds for the selection of potential candidate voxels were defined for an average sensitivity, or 

TPR, greater than 0.9, meaning that almost all of voxels with the simulated activity of interest were 

selected. After the selection of the voxels of interest, those that do not have activity of interest are 

used to calculate the global time course that is, then, regressed out from all the tiƳŜ ŎƻǳǊǎŜΩǎ ǾƻȄŜƭǎΦ 

¢Ƙƛǎ ǎǘŜǇ ƛǎ ŀ ŎǊƛǘƛŎŀƭ ƻƴŜ ǎƛƴŎŜ ƛǘ Ŏŀƴ ƛƴŘǳŎŜ ŀ ƴŜƎŀǘƛǾŜ ōƛŀǎ ƻƴ ǘƘŜ ǘƛƳŜ ŎƻǳǊǎŜΩǎ ǾƻȄŜƭǎ ǊŜŘǳŎƛƴƎ ǘƘŜ 

simulated HRF amplitude initially added to the data. Also, the spikes of epileptic activity are added 

with randomly chosen timing. This can justify the fact that some cases have their simulated epileptic 

activity masked by this global activity decreasing the overall TPR value. It is also important to note 

that independently of the TPR value the average FPR is lower than 0.12 for all cases, indicating that 

the t-maps chosen for each case do not describe substantial activation out of the ROIs boundaries. 

Finally, this inconsistency in the results does not allows to infer about the best frequency of stimuli 

in order to have a higher TPR. 

Second, an issue related to 2dTCA algorithm concerns the assumption that RTCs represent different 

sources of activation that do not have overlapping temporal profiles of activation. This means that 

it is assumed that two time series whose maximum signal change occurs at the same time, have the 

remaining temporal profile with similar shape. Therefore, concerning the results on Fig. 13, as the 

simulated spikes are attributed to BOLD activity at random, if the maximum signal change of this 

simulated data has the same timing as other sources of activation then the simulated data will be 

masked. 
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Nevertheless, it can be state that in order to have an increased likelihood of detecting BOLD epileptic 

activity it is desirable that the correspondent HRF has an amplitude greater than 1.25%. 

One issue concerning real data studies is related to epileptogenic HRFs when the noise level on the 

time series is high. In that cases if that response has a low amplitude, the noise will mask it because 

the algorithm will only map to the bi-dimensional histogram signal increases which are 2 standard 

deviations above the baseline. Also, in these circumstances the noise amplitude may precede the 

HRF amplitude. This issue is even more critical with MRI scanners with low magnetic field strengths 

due to smaller SNRs (Yang et al. 2012). 

Another disadvantage of the 2dTCA is that usually a large number of RTCs are obtained and some 

may result in t-maps with significant brain activations not related to epileptic activity. Hence, in real 

data studies, without some a priori knowledge about the localization of the epileptogenic focus it is 

difficult to select the right t-maps. It is therefore important to follow strategies to classify, even in a 

qualitatively way, the obtained maps with significant activation. An example of an exclusion criterion 

ƛǘΩǎ ōŀǎŜŘ ƻƴ ŎƻƳƳƻƴ ƪƴƻwn networks that usually appear on resting-state data, as the Default 

Mode Network and Visual Network on healthy (Fox et al. 2005; Cauda et al. 2010) and epileptic 

patients (Victoria L Morgan et al. 2008; Morgan et al. 2010; Morgan et al. 2007). Another way to 

exclude non-interesting maps is to delimit the statistical analysis to brain regions which are 

suspected to allocate the epileptogenic focus (clinical information). 
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CHAPTER 3. MULTISCALE ENTROPY 

 

3.1. Introduction 

The early work on complexity analysis of physiological time series were based on entropy algorithms 

(Andino et al. 2000; Richman & Moorman 2000), which quantifies the regularity of a time series. 

However, the relationship between the increase or decrease of entropy and low or high regularity 

of a given time series is not always straightforward. For example, if a certain pathology is associated 

with erratic fluctuations with statistical properties similar to uncorrelated noise, the assigned value 

of entropy to that system is high compared to a healthy system with correlated noise (Costa et al. 

2002). This is contra intuitive once it is expected that a healthy system has a higher entropy than a 

pathologic system (Goldberger et al. 2002). The justification for this inconsistency could be in the 

fact that these entropy algorithms are based on single-scale analysis and do not take into account 

the complex temporal fluctuations inherent in healthy and pathologic physiologic systems (Costa et 

al. 2002). 

Therefore, in order to respond to this shortcoming, a new method was developed taking into 

account multiple time scales of analyzed time series, named multiscale entropy (MSE) analysis 

(Costa et al. 2002; Costa et al. 2005). This method is based on the hypothesis that the ability of a 

biological system to adapt and function on constantly changing environment is a reflection of its 

own multiscale complexity. Hence, a reduction of this adaptive capacity, caused by disease states, 

would be associated with a loss of complexity.  

The procedures involved in calculating MSE 

can be summarized in the following steps 

(Costa et al. 2005). First, a coarse-grained time 

series is constructed according to a scale 

factor, as represented in Fig. 14. The length of 

each coarse-grained time series is equal to the 

length of the original time series divided by the 

scale factor. Second, for each coarse-grained 

time series a measure of sample entropy is done. The sample entropy is a regularity statistic which 

searches for patterns in a time series and quantifies its degree of predictability. Thus, it can be 

defined by the negative natural logarithm of the conditional probability that a dataset of length N, 

Fig. 14- Schematic illustration of the coarse-graining procedure 

(Costa et al. 2005). 
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having repeated itself within a tolerance r (similarity factor) for m points (pattern length), also 

repeats itself for m+1 points, without allowing self-matches (Richman & Moorman 2000). Finally, 

the sample entropy profile is examined over a range of scales (Costa et al. 2005). 

In Fig. 15 is represented a MSE analysis (Bottom) 

to simulated white and colored (1/f) noises (Top). 

As shown the entropy value for the coarse-

grained 1/f series remains almost constant for all 

scales, while for the coarse-grained white noise 

time series monotonically decreases. This is 

consistent with the fact that 1/f noise contains 

complex structures across multiple scales (Zhang 

1991). Therefore, the statistical properties of 

fluctuations are different in each scale since new 

information is revealed in all of them (Costa et al. 

2005). 

Despite all the advantages described above, this 

technique has several limitations that need to be 

taken into account. To provide reliable statistics 

for the entropy measure on each scale the length 

of the original time-series must be large enough, 

about 10m to 20m (Richman & Moorman 2000). 

This length definition is dependent on the level of accepted uncertainty. When dealing with EEG 

time series this limitation is not so restricted once typical length data reaches thousands of time 

points. However, with BOLD time series, which typically have between 100 and 300 time points, this 

issue could be an aggravating factor, limiting the factor scale to a low value. For example, if the 

length of a time series is 100 time points than at a scale factor of 20 we have a coarse-grained time 

series with only 5 points, restricting the possible choices for m (pattern length) and r (similarity 

factor) parameters and, therefore, making the sample entropy estimation unreliable. Thus, a 

carefully examination on these parameters values are of extreme importance. 

Studies on EEG signals have examined the use of several parameter values, such as m=1 and r=0.25 

(Escudero et al. 2006), m=2 and r=0.15 (Catarino et al. 2011), m=2 and r=0.20 (Mizuno et al. 2010; 

Fig. 15- Top: Simulated white and 1/f noises. Bottom: MSE 

analysis of simulated white and 1/f noise time series. 

Adapted from (Costa et al. 2005). 
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Takahashi et al. 2009; Takahashi et al. 2010), and m=2 and r=0.50 (McIntosh et al. 2013), while 

studies on BOLD signals have found their optimal parameters values as m=1,2 or 3 and r=0.15 

(Ferreira, Rocha, et al. 2012; Ferreira et al. 2013) and m=1 and r=0.35 (Yang, Huang, et al. 2013). The 

present methods used to evaluate this optimization are based on empirical approaches (Yang et al. 

2013; Yang et al. 2013b)Σ ŘŜƳƻƴǎǘǊŀǘƛƴƎ ǘƘŀǘ ǘƘŜǊŜΩǎ ƴƻ ƎǳƛŘŜƭƛƴŜǎ ŦƻǊ ƻǇǘƛƳƛȊƛƴƎ ǘƘŜǎŜ ǇŀǊŀƳŜǘŜǊǎ 

values. Hereupon, the interpretation of the MSE analysis output from BOLD signals must be careful 

by taking into account the following aspects: the low time series length, which limits the choice of 

scale factors; and the sampling rate for multislice acquisitions, since the influence from respiration 

ŀƴŘ ŎŀǊŘƛƻǾŀǎŎǳƭŀǊ ƘŜƳƻŘȅƴŀƳƛŎǎ ŎŀƴΩǘ ōŜ ǘƻǘŀƭƭȅ ŜȄŎƭǳŘŜŘ ǿƛǘƘ ǘƘŜ ǘȅǇƛŎŀƭƭȅ ǳǎŜŘ ǎŀƳǇƭƛƴƎ ǊŀǘŜǎ 

(TR Ғ 2s) in fMRI (Lowe et al. 1998). 

Concerning the application of MSE analysis specifically to epilepsy, Ouyang and colleagues showed 

that EEG signals of rats are more complex in seizure-free state than in seizure state by performing a 

MSE analysis in epileptic rats (Ouyang et al. 2009). They demonstrated that the MSE method is able 

to classify epileptic EEG signals. Another study on human brainΩǎ MSE analysis was conducted by 

Protzner and colleagues in (Protzner et al. 2010). They compared the epileptic and healthy 

hippocampiΩǎ signal complexity through MSE analysis on iEEG signals based on the hypothesis that 

patients with epilepsy have reduced variability on epileptogenic tissue. Consequently, it was 

expected that the epileptogenic hippocampus showed lower MSE values than the healthy 

hippocampus. The results suggested that the brain signal variability could be a robust biomarker of 

neuronal system integrity in patients with epilepsy. Finally, to the best of my knowledge there are 

no studies that applied MSE analysis to epileptic BOLD signals. 

 

3.2. Materials and Methods 

The MSE method implemented in this project is a modified version of the original approach of (Costa 

et al. 2002). Throughout this section, the steps of the former, as well as, of the main differences 

between the two approaches are explained in detail. The algorithm of the original approach can be 

found at PhysioNet3 (Goldberger et al. 2000). 

                                                           
3 PhysioNet: MSE original approach algorithm (http://www.physionet.org/physiotools/mse/tutorial/) 



 

26 
 

3.2.1. Modified MSE: Algorithm implementation 

Time-series coarse-graining 

 

Fig. 16- Schematic illustration of the modified coarse-graining procedure where a moving average is applied to the original 

time-series for each scale factor. Adapted from (Costa et al. 2005). 

This algorithm bases its analysis on one-dimensional time-series and the first step is to perform a 

coarse-graining of the original data. The original approach, see 2.1 Introduction, of (Costa et al. 

2002) is limited for short time-series, such as the case of typical BOLD time series, since the reliability 

of statistics required for the sample entropy computation (see Sample entropy computation) is 

severely compromised as the time series are further coarse-grained and consequently shorter. In 

order to overcome this shortcoming a new approach was developed (Tavares, Santos-Ribeiro, and 

Ferreira, unpublished results). Like in the original method, a set of coarse-grained time series were 

created using a moving average of scale factor t time points, as represented in Fig. 16. Each point yj 

in the new time series was obtained through Eq. 3. 

◐▒
Ⱳ В ●░

▒Ⱳ
░▒

Ⱳ
ȟ     ▒ ╝ Ⱳ  Eq. 3 

where xi represents the point i of the original time series, of length N, and t the scale factor. The 

total length of each coarse-grained time series is given by ╝ Ⱳ . With this approach it was 

guaranteed a larger number of scales in which the sample entropy computation was provided by 

reliable statistics. 

Sample entropy computation 

Once the coarse-graining process was completed the next step was to compute the sample entropy 

for each coarse-grained time series. An illustration of how this was accomplished is represented in 
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Fig. 17. Considering a time series, u, the algorithm first defines a pattern of length m, defined by the 

user, and another of length m+1. Then, it searches for forward repetitions of each pattern in the 

time series and retain their number into two variables, A and B, for m+1 and m pattern length, 

respectively. A pattern is considered to match the template if the absolute difference between all 

its elements is within a tolerance r. Thus, for the example depicted in Fig. 17, considering the pattern 

of length m=2 (green u[1] ς red u[2]) and the correspondent pattern of length m+1=3 (green u[1] ς 

red u[2] ς blue u[3]), the number of repetitions for each case is 3 and 2, respectively. This matching 

analysis must be repeated for all possible templates of length m and m+1 and in order to calculate 

A and B, the number of repetitions for each case are summed up. Finally, the sample entropy 

(SampEn) it is given by the conditional probability that two sequences that match each other for the 

first m data points also match for the next point (Richman & Moorman 2000) and is computed 

through Eq. 4. 

╢╪□▬╔▪□ȟ► ἴἶ
═□ ►

║□ ►
 Eq. 4 

Complexity Index Computation  

The final step of this algorithm was to compute the complexity index (CI), given by the sum of the 

sample entropy over all scales, an approach similar to that presented in (Yang, Huang, et al. 2013) 

and (Ferreira et al. 2013). Hereupon, a quantitative comparison between two different time series 

could be made in terms of its complexity behavior. 

r 

r 

r 

Fig. 17- Illustration of sample entropy computation. In this example, the pattern length m and the tolerance r are 2 and 

20, respectively. Dotted horizontal lines around data points u[1], u[2] and u[3] represent u[1] ± r, u[2] ± r, and u[3] ± r, 

respectively. All green, red, and blue, points represent data points that match the data point u[1], u[2], and u[3], 

respectively. Adapted from (Costa et al. 2005). 
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Optimal parameters choice 

In the modified MSE algorithm there are two parameters that must be chosen by the user, the 

pattern length m, and the similarity factor or tolerance r. In order to determine which pair of 

parameters (m,r) were the most suitable for shorter time series (with length around 100-250 time 

points), a set of surrogate signals were created and compared in terms of their CI. Those surrogate 

signals consisted of white and 1/f noises, signals known to behave differently in terms of its 

regularity (see Fig. 15). The comparison made between these two signals aimed to find the 

parameters values that give the highest difference, which is given by the anisotropy index (AI),          

Eq. 5. 

═╘

╒╘◌▐░◄▄ ▪▫░▼▄╒╘
█
 ▪▫░▼▄

╒╘◌▐░◄▄ ▪▫░▼▄╒╘
█
 ▪▫░▼▄

 Eq. 5 

Hereupon, the choice process consisted of the following steps. First, 20 000 white Gaussian and 1/f 

noises time series (10 000 of each) were created using an intrinsic function of Matlab® and a function 

created by (Little et al. 2007), respectively. Second, the sample entropy profile over scales 1 to 20 

was computed for each time 

series, and the mean and 

standard deviation of the sample 

entropy for each scale and each 

noise type was calculated. Third, 

the CI corresponding to white and 

1/f noises were computed in 

order to obtain the AI. This 

process was repeated for m 

values of 2 and 3 and r values of 

0.1 to 0.5 times the standard 

deviation of the coarse-grained 

time series being analyzed for 

entropy computation, in 

increments of 0.05. Forth, a score 

is attributed to each pair of 

parameters (m,r) according to the 

Fig. 18- Scoring classification for each possible pair of parameters (pattern 

length - m, tolerance - r) with a tested m = 2 (light blue) and 3 (dark blue) and 

r = 0.1 to 0.5 in steps of 0.05. Each bar represents the total score attributed to 

that case. The results showed that the optimal values for m and r are 3 and 0.4 

times the standard deviation, respectively, with a total score of 67. 
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following criteria: (i) the highest score value is defined has the total number of cases, i.e., 2 m values 

times 9 r values that equals 18 total cases; (ii) the one corresponding to the highest AI is assigned 

with the highest score; (iii) the next case with the highest AI is assigned with the second highest 

score (e.g. 17), and so on, until no more cases remain. These four steps are repeated for original 

time series lengths from 100 to 250 time points in increments of 50 time points, and the score of 

each case (m,r) is accumulated. Finally, the best case is selected as the one with the overall highest 

score. The results (see Fig. 18) showed that the optimal values for m and r are 3 and 0.4 time the 

standard deviation, respectively, with a total score of 67. These values were used in the remaining 

MSE analysis. 

3.2.2. Illustrative examples 

The following examples were reproduced for illustrative purposes. 

Comparison between sample entropy profiles of white and 1/f noise obtained using original and 

modified approaches. For this example, 200 white Gaussian and 1/f noises time series (100 of each) 

with 1 000 time points were created, in a similar way as described above (see 3.2.1 Modified MSE: 

Algorithm implementation). Second, the sample entropy profile over scales 1 to 20 was computed 

for each time series, and the mean of the sample entropy (computed with m=3 and r=0.4) for each 

scale and each noise type was calculated. This process was repeated using the original and the 

modified approaches and the sample entropy for each case was plotted on the same figure. The 

main goal of this example was to compare the sample entropy profiles originated from these two 

approaches. 

Comparison between sample entropy profiles of short white and 1/f noise time series obtained 

using original and modified approaches. For this example, 200 white Gaussian and 1/f noises time 

series (100 of each) with 100, 150, 200, and 250 time points were created, in a similar way as 

described above (see 3.2.1 Modified MSE: Algorithm implementation). Second, the sample entropy 

profile (computed with m=3 and r=0.4) over scales 1 to 20 was computed for each time series, and 

the mean of the sample entropy for each scale and each noise type was calculated. Third, the CI 

corresponding to white and 1/f noises were computed. This process was repeated using the original 

and the modified approaches. The main goal of this example was to compare the sample entropy 

behavior over scales and its influence on CI computation when used either of these two approaches 

for short time series. 
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Comparison between sample entropy profiles and respective CI of white, 1/f and 1/f 2 noise, and 

sinusoidal time series obtained using modified approach. For this example, 300 white Gaussian, 

1/f  and 1/f2 (another type of noise also known as Brownian or red noise that corresponds to the 

integration of the white noise, see Fig. 19) noises time series (100 of each) with 250 time points 

were created, in a similar way as described above (see 3.2.1 Modified MSE: Algorithm 

implementation). In addition to these signals two sinusoidal time series, created from a Matlab® 

intrinsic function with frequencies of 0.01 Hz and 0.1 Hz, a sample frequency of 0.5 Hz and a length 

of 250 time points (see Fig. 19), was also created in order to represent a periodic signal. The choice 

of this length is justified by the maximum length of short time series simulated in the above example.  

 

Fig. 19- Top: Sinusoidal time series with a frequency and sample frequency of 0.01 Hz and 0.5 Hz, respectively, and a length 

of 250 time points. Bottom: 1/f2 noise time series with a length of 250 time points. 

The sample entropy profile (computed with m=3 and r=0.4) over scales 1 to 20 was computed for 

each time series, and the mean of the sample entropy for each scale and each noise type was 

calculated. Then, the CI corresponding to each signal type was computed. The main goal of this 

example was to compare the sample entropy behavior over scales and corresponding CI values 

when using a noise-like or periodic signal. 
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3.3. Results 

Comparison between sample entropy profiles of white and 1/f noises obtained using original and 

modified approaches. 

 

Fig. 20- Sample entropy profile (computed with m=3 and r=0.4) over scale for original time series of white (asterisk) and 

1/f (circle) noises of length 1000 time points using the original (blue) and the modified (red) MSE algorithm. 

Fig. 20 shows the sample entropy profile for white and 1/f noises using the original approach (in 

blue) and the modified approach (in red). The results demonstrate that sample entropy profile for 

the original method is different for the two types of noise: a 1/f noise time series have an 

approximately flat shape over scales, while a white noise time series decreases in a monotonic way. 

Also, for scales 1 and 2 the values of entropy for the white noise time series are greater than those 

for 1/f noise. However, as scale increases, those values become smaller than those for the 1/f noise.  

On the other hand, when using the modified version of the MSE algorithm both sample entropy 

profiles monotonically decrease and the entropy values for white noise time series are greater than 

those for 1/f time series for all scales. 

Lastly, for scale 1 the entropy value for both noises types are the same irrespectively of the MSE 

approach used. 
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Comparison between sample entropy profiles of short white and 1/f noise time series obtained 

using original and modified approaches. 

 

Fig. 21- Left: Sample entropy profile (computed with m=3 and r=0.4) over scale for original time series of white (asterisk) 

and 1/f (circle) noises with lengths in the range of 100 to 250 time points, in increments of 50, using the original (Top) and 

the modified (Bottom) MSE algorithm. Right: CI distribution in function of time series length correspondent to the sample 

entropy analysis presented at left. 
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Fig. 21 shows, on the left side, the sample entropy profile for white and 1/f noises using the original 

approach, on top, and the modified approach, on bottom, for time series of length 100, 150, 200, 

and 250 time points, in blue, red, green, and black, respectively. The results demonstrate that 

sample entropy profile for the original method have an instable behavior when compared to that 

originated from the modified approach as the length of the noise time series becomes shorter. 

tŀǊǘƛŎǳƭŀǊƭȅΣ ŦƻǊ ǘƛƳŜ ǎŜǊƛŜǎ ƻŦ млл Řŀǘŀ ǇƻƛƴǘǎΩ ƭŜƴƎǘƘ ǘƘŜ ƻǊƛƎƛƴŀƭ a{9 method compute sample 

entropy values with similar amplitude for white and 1/f noise time series over scales 3 to 20. This 

phenomena is, also, observable on the right side of Fig. 21 where the difference between the CI 

values, one for each type of noise time series, is consecutively greater as the length of the times 

series increases. 

On the other hand, the sample entropy profiles and the corresponding CI values remain stable over 

ǎŎŀƭŜǎ ƛƴŘŜǇŜƴŘŜƴǘƭȅ ƻŦ Řŀǘŀ ƭŜƴƎǘƘ ǿƘŜƴ ƛǘΩǎ ǳǎŜŘ ǘhe modified version of the MSE algorithm. 

Comparison between sample entropy profiles and respective CI of white, 1/f and 1/f2 noise, and 

sinusoidal time series obtained using modified approach. 

 

Fig. 22- Left: Sample entropy profile (computed with m=3 and r=0.4) over scale for time series of white (in blue), 1/f (in 

red) and 1/f2 (in green) noises, and sinusoidal signals of 0.01 Hz (in cyan) and 0.1 Hz (in black) with a length of 250 time 

points using the modified MSE algorithm. Right: Corresponding CI values for each signal type presented at left. CIWhite noise 

= 17.2; CI1/f noise = 8.1; CI1/f
2
 noise = 3.8; CIsinusoid 0.01 Hz = 3.2; CIsinusoid 0.1 Hz = 0 
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Fig. 22 shows the sample entropy profile for white, 1/f and 1/f2 noises, and sinusoidal signal using 

the modified approach. The results demonstrate that sample entropy profile, computed using the 

modified approach, for the three types of noise has a similar shape, monotonically decreasing, but 

with lower overall sample entropy values from white to 1/f and 1/f2 noises, respectively. The 

sinusoidal signal of 0.01 Hz have an almost flat sample entropy profile with lower values in the range 

0.155 to 0.166. Relatively to the 0.1 Hz sinusoidal signal the sample entropy is zero for all scales.  

The corresponding CI values are 17.2, 8.1, 3.8, 3.2, and 0 for white, 1/f, and 1/f2 noises and 

sinusoidal signals of 0.01 Hz and 0.1 Hz, respectively. 

 

3.4. Discussion 

This chapter describes a complexity analysis method based on the sample entropy property of the 

signal being analyzed over several scales, allowing the assessment and classification of the signal 

structure. The main advantage of this algorithm is its ability of distinguish two signals with different 

frequency dependency behaviors, a feature with high relevance when dealing with physiological 

signals. 

The results shown in Fig. 20 for the original approach are consistent with those presented in (Costa 

et al. 2002; Costa et al. 2005). Since the white noise does not have complex structures, as the scale 

factor increase the coarse-grained time series tends to a fixed value, decreasing the sample entropy. 

On the other hand, 1/f noise is characterized by having equal energy in all octaves of frequency 

(Ward & Greenwood 2007) which mean that new information is given in each scale and. Therefore, 

when analyzing the sample entropy profile over scale of 1/f noise it is nearly flat with a constant 

value of entropy over scale. 

For modified version of the MSE method the results in Fig. 20 show a different behavior of the 

sample entropy over scale for the two types of noise. This can be justified by a combination of the 

following factors. Back to the original definition of the sample entropy, this algorithm does not count 

for self matches, reducing possible biasing. From this point of view, lower values of sample entropy 

indicates more self-similarity in a time series (Richman & Moorman 2000). However, in this version 

of the MSE method, each coarse-grained time series is created using a moving average, implying an 

overlapping of information used in each average. Therefore, when the sample entropy is computed 
















































































































