LIST OF FIGURES

Chapter 2

Figure 2.1 Schematic showing (A) a magnetic semiconductor, (B) a non-magnetic semiconductor material, and (C) a diluted magnetic semiconductor (adapted from ref. 7)...

Figure 2.2 Bulk structure of rutile and anatase. The tetragonal bulk unit cell of rutile has the dimensions, a = b = 4.587 Å, c = 2.953 Å, and the one of anatase a = b = 3.782 Å, c = 9.502 Å. In both structures, slightly distorted octahedra are the basic building units. The bond lengths and angles of the octahedrally coordinated Ti atoms are indicated and the stacking of the octahedra in both structures is shown on the right hand side (adapted from ref. 32)…………………………………………………

Figure 2.3 The M-T data for a Ti$_{0.93}$Co$_{0.07}$O$_{2-\delta}$ film. The inset shows the hysteresis loops obtained under zero-field cooling (ZFC) and field cooling (FC) conditions (from ref. 40)..

Figure 2.4 Magnetization hysteresis loops for Ti$_{1-x}$Co$_x$O$_2$ thin films with Co contents of x=0.03 (a), x=0.05 (b), x=0.07 (c), x=0.12 (d). Plots (a), (b): films with no Co clusters; plots (c), (d): films with Co clusters. Scheme bellow: microstructural model representing the influence of Co content on the magnetic properties of Ti$_{1-x}$Co$_x$O$_2$ thin films. FM stands for ferromagnetic and SM for soft magnetic behaviour. Adapted from ref. 47…………………………………………

Figure 2.5 The temperature dependence of the resistivity for: (a) a 600 nm thick undoped TiO$_2$ film, (b) a 200 nm thick 7% Co:TiO$_2$ film, and (c) a 1200 nm thick 7% Co:TiO$_2$ film (from ref. 43)………………………………………………

Figure 2.6 Magnetoelasticity as a function of magnetic field for undoped TiO$_2$ and Ti$_{1-x}$Co$_x$O$_{2-\delta}$ films (from ref. 40)..

Figure 2.7 Polaron percolation model as illustrated by Coey et al. (from ref. 23)

Chapter 3

Figure 3.1 Schematic illustrating key elements of the pulsed laser ablation event. (a) Initial absorption of laser radiation (indicated by long arrows), melting and vaporization begin (shaded area indicates melted material, short arrows indicate motion of solid–liquid interface). (b) Melt front propagates into the solid, vaporization continues and laser-plume interactions start to become important. (c) Absorption of incident laser radiation by the plume, and plasma formation. (d) Melt front recedes leading to eventual re-solidification.................................

Figure 3.2 Schematic presentation of the pulsed laser deposition process.................................

Figure 3.3 Schematic diagram of atomic processes in the nucleation of three dimensional clusters of deposited film atoms on a substrate surface...
Chapter 4

Figure 4.1 Schematic front view of the deposition set-up... 49

Figure 4.2 Typical beam profile (variation in intensity across the beam) for an excimer laser. Axis scales depend on the type of exciplex... 51

Figure 4.3 General view of the (vacuum) PLD chamber.. 53

Figure 4.4 Detailed cross-section view of the vacuum chamber.. 54

Figure 4.5 Substrate heating holder: a) Schematic side view; b) Detailed cross-section view. 57

Figure 4.6 Calibration curve for Al2O3(0001) substrate temperature............................... 57

Figure 4.7 General view of the target holder... 58

Figure 4.8 A Bragg reflection from a particular family of lattice planes, separated by a distance d. Incident and reflected rays are shown for two neighbouring planes. The path difference is 2d sin θ... 63

Figure 4.9 Effect of fine crystallite size on diffraction lines. a) (hkl) diffraction peak from an infinite crystal with a perfect 3D order (hypothetical case); b) peak broadening due to small crystallite size... 64

Figure 4.10 XRD pattern of the Co-doped TiO2 target used for the deposition of the films... 65

Figure 4.11 RBS spectrum from a thin film on a substrate... 69

Figure 4.12 Scheme of the optical path and components of the Shimadzu UV-Visible Spectrophotometer. D2: deuterium lamp; W1: halogen lamp; W: window plate; M1 – M5: mirrors (M3 is a half-mirror); S1/S2: entrance/exit slits; G: grating; F: filter; Sam.: sample cell; Ref.: reference cell; L: lens; P.D.: photodiode... 71

Figure 4.13 An absorbing thin film on a thick, finite, transparent substrate....................... 73

Figure 4.14 Transmittance spectrum of a Co-doped TiO2 thin film deposited on Al2O3 (0001) substrate... 73

Figure 4.15 Variation of the refractive index of rutile23,24 with the wavelength........ 75

Figure 4.16 Absorption coefficient \(\alpha\) versus \(\lambda\) for different Co-doped TiO2 thin films deposited onto Al2O3 (0001) substrate... 77

Figure 4.17 (\(\alpha h\nu\))1/2 versus \(h\nu\) for different Co-doped TiO2 thin films deposited onto Al2O3 (0001) substrate, and linear fit to the high energy region allowing the determination of the optical energy band gap... 77

Figure 4.18 a) Four-point probe arrangement for measuring sheet resistance of a thin film; b) geometry defining the sheet resistance of a film of thickness \(d\), length \(l\) and width \(b\)…… 78
Chapter 5

Figure 5.1 XRD patterns of Co-doped TiO$_2$ films grown on (0001) Al$_2$O$_3$ substrates in an Ar atmosphere, $P_T = 5.0 \times 10^{-1}$ mbar, at different laser energies, from 52 to 195 mJ at substrate temperature, $T_S = 250 ^\circ$C……………………………………………………………………………………………………… 83

Figure 5.2 XRD patterns of Co-doped TiO$_2$ films grown on (0001) Al$_2$O$_3$ substrates in an Ar atmosphere, $P_T = 5.0 \times 10^{-1}$ mbar, at different laser energies, from 53 mJ to 157 mJ at substrate temperature, $T_S = 310 ^\circ$C……………………………………………………………………………………………………… 84

Figure 5.3 Mean crystallite size of Co-doped TiO$_2$ films deposited on (0001) Al$_2$O$_3$ substrates as a function of laser output energy. The curve drawn through the data points is for guidance only……… 84

Figure 5.4 Optical transmittance spectra of Co-doped TiO$_2$ films grown in Argon environment at $T_S = 250 ^\circ$C for laser output energies of 157 and 195 mJ (a) and 52 and 95 mJ (b). In (c), the films were grown at $T_S = 310 ^\circ$C for various laser output energies……………… 86

Figure 5.5 Photon energy dependence of SQRT(\(\alpha h \nu\)) for Co-doped TiO$_2$ films, identified through their labels. Straight lines represent linear fits to the high energy region of the curves. Values for the band gap of the films are also shown in the figures. Left panel: $T_S = 250 ^\circ$C; right panel: $T_S = 310 ^\circ$C……… 87

Figure 5.6 RBS spectra of Co-doped TiO$_2$ thin films deposited on (0001)Al$_2$O$_3$ substrate recorded for 4He$^+$ incident energy of 2 MeV (top) and 1H$^+$ incident energy of 2 MeV (bottom), and the corresponding theoretical simulations……
substrate and the corresponding theoretical simulations. The spectra were recorded with 1H$^+$ incident energy of 2 MeV.

Figure 5.15 RBS spectra of sample F84 deposited on (0001) Al$_2$O$_3$ substrate recorded for 4He$^+$ incident energy of 2 MeV and the corresponding theoretical simulation.

Figure 5.16 RBS spectra of samples F42 and F56 deposited on (0001) Al$_2$O$_3$ substrate. Left panel spectrum was recorded for 4He$^+$ incident energy of 2 MeV while on the right panel 1H$^+$ incident energy of 2 MeV was used. The RUMP simulations are also plotted.

Figure 5.17 XRD patterns of Co-doped TiO$_2$ films grown on (0001) Al$_2$O$_3$ substrates in an Ar atmosphere, $P_T = 5.0 \times 10^{-1}$ mbar, at different substrate temperatures.

Figure 5.18 Optical transmittance spectra a) and Tauc plot b) for the Co-doped TiO$_2$ films displayed in Fig. 5.17.

Figure 5.19 XRD θ-2θ scanning patterns of Co-doped TiO$_2$ thin films grown on (0001) Al$_2$O$_3$ substrates, at argon fluxes, Φ_{Ar}, ranging from 6 to 270 sccm. The substrate temperature, pulse repetition rate and laser fluence were kept constant at 310 °C, 20 Hz and 5.1 J/cm2, respectively. Total pressure is 5.0\times10$^{-1}$ mbar.

Figure 5.20 Argon flux favours the rutile phase growth relative to that of anatase phase. The dashed line is for visual guidance only.

Figure 5.21 XRD θ-2θ scanning patterns of Co-doped TiO$_2$ thin films grown on (0001) Al$_2$O$_3$ substrates, at argon fluxes, $\Phi_{Ar} = 6$ and 270 sccm. The substrate temperature, pulse repetition rate and laser fluence were kept constant at 310 °C, 20 Hz and 5.1 J/cm2, respectively. Total pressure is 7.0\times10$^{-2}$ mbar. Right panel: magnification of the 2θ range: 38$^\circ$–44$^\circ$.

Figure 5.22 Optical transmittance spectra of Co-doped TiO$_2$ films grown in Ar environment at a) $P_T = 5.0 \times 10^{-1}$ mbar, b) $P_T = 7.0 \times 10^{-2}$ mbar.

Figure 5.23 Photon energy dependence of the square root of ($\alpha h\nu$) for the Co-doped TiO$_2$ films deposited under the conditions described in Figs. 5.22-a and 5.22-b. Straight lines represent linear fits to the high energy region of the curves. Values for the band gaps of the films are also shown in the figure.

Figure 5.24 Band gap energy, E_g, versus Ar flux for Co-doped TiO$_2$ thin films deposited at $P_T = 5.0 \times 10^{-1}$ mbar and 7.0\times10$^{-2}$ mbar, respectively.

Figure 5.25 (a) XRD patterns of Co-doped TiO$_2$ thin films deposited on (0001) Al$_2$O$_3$ at a total pressure of 1.0\times10$^{-1}$ mbar with an argon flow rate of 30 sccm and $T_S = 200$ °C. (b) The asymmetric peak at about 2$\theta = 38.81^\circ$ was resolved into two peaks: R(200) at 2$\theta = 38.89^\circ$ and A(112) at 2$\theta = 38.65^\circ$. Labelled lines were taken from JCPDS file cards no. 21-1272 for anatase and 21-1276 for rutile.

Figure 5.26 a) Variation of [A$_{112}$] / [R$_{200}$] intensity ratio with hydrogen flux for samples grown at $T_S = 200$ °C. b) Volume of the unit cell vs. hydrogen flow rate for the same samples as in a). Dashed lines are for visual guidance only.

Figure 5.27 a) XRD patterns of Co-doped TiO$_2$ thin films deposited on (0001) Al$_2$O$_3$ at a total pressure of 1.0\times10$^{-1}$ mbar with an argon flow rate of 30 sccm and $T_S = 310$ °C. b) PsVoigt fit of R(200) at 2$\theta = 39.29^\circ$. The H$_2$ flow rates are indicated in the figure. Labelled lines were
Figure 5.28 Optical transmittance spectra of Co:TiO₂ films grown in Ar/H₂ environment at 1.0×10⁻¹ mbar, for various H₂ flow rates; substrate temperature: T_s = 310 °C (left) and T_s = 200 °C (right).……………………………………………………………………………………… 114

Figure 5.29 Photon energy dependence of SQRT (αhν) for the Co-doped TiO₂ films deposited under the conditions described in Fig. 5.28. Straight lines represent linear fits to the high energy region of the curves. Values for the band gap of the films are also shown in the figure………………………………………………………………………………………….. 115

Figure 5.30 Layered structure model used to fit the SE data…… 116

Figure 5.31 Refractive index (left panels) and extinction coefficient (right panels) of the bulk layer of the Co-doped TiO₂ films, as a function of H₂ flow rate for two substrate temperatures, T_s.…… 118

Figure 5.32 Refractive index (left panels) and extinction coefficient (right panels) of the surface layer of the Co-doped TiO₂ films, as a function of H₂ flow rate for two substrate temperatures, T_s.…… 119

Figure 5.33 a) RBS and b) ERDA spectra of sample F94 recorded for ⁴He⁺ incident energy of 2 MeV and the corresponding theoretical simulations……