RESEARCH

European Pharmacy Students’ Experience With Virtual Patient Technology

Afonso Miguel Cavaco, PhD, and Filipe Madeira, PharmD
Faculty of Pharmacy, University of Lisbon, Portugal
Submitted October 7, 2011; accepted February 13, 2012; published August 10, 2012.

Objective. To describe how virtual patients are being used to simulate real-life clinical scenarios in undergraduate pharmacy education in Europe.

Methods. One hundred ninety-four participants at the 2011 Congress of the European Pharmaceutical Students Association (EPSA) completed an exploratory cross-sectional survey instrument.

Results. Of the 46 universities and 23 countries represented at the EPSA Congress, only 12 students from 6 universities in 6 different countries reported having experience with virtual patient technology. The students were satisfied with the virtual patient technology and considered it more useful as a teaching and learning tool than as an assessment tool. Respondents who had not used virtual patient technology expressed support regarding its potential benefits in pharmacy education. French and Dutch students were significantly less interested in virtual patient technology than were their counterparts from other European countries.

Conclusion. The limited use of virtual patients in pharmacy education in Europe suggests the need for initiatives to increase the use of virtual patient technology and the benefits of computer-assisted learning in pharmacy education.

Keywords: virtual patient, simulation, pharmacy education, Europe, survey

INTRODUCTION

Healthcare education, including pharmacy practice, has benefited from simulation-based learning since the early 1970s.1,2 Several types of simulation have been used in pharmacy education in the United States, including simulated and/or standardized patients, computer-based learning simulations, high-fidelity human simulators, and virtual-reality patients.2 Multimedia-based healthcare education, including the use of virtual patients, is considered to be educationally effective and has been described favorably when compared with traditional instruction.3

There are varying proposals for how to define virtual patients. For instance, in proposing a virtual patient typology, Huwendiek and colleagues described it as “an interactive computer simulation of real-life clinical scenarios for the purpose of healthcare and medical training, education, and assessment.”4 Apart from a number of medical specialties comprising, among others, training in lifesaving events,5 virtual patients have also been used in other health professions, ranging from nursing6 and occupational therapy7 to pharmacy practice.8,9 Pharmacists have participated in initiatives to test virtual patient-based education within multi-professional groups,10 as well as in initiatives to develop interprofessional integration among health professions students.11

Among other purposes, virtual patient technology was designed to promote students’ clinical reasoning12 and the development of communication skills.13 Users’ opinions of this educational resource, including medical students’ acceptance of virtual patient design principles and of virtual patient-based learning and assessment tools, indicate that virtual patient technology benefits both clinical reasoning and communication skills.14-16

In addition to virtual laboratories for training students in the basic sciences,17 multimedia simulation18,19 and virtual patient technology20 have been successfully implemented in pharmacy education. While there have been European virtual patient technology initiatives since the early 2000s,21,22 in particular the development of shared electronic patients (eViPs) across European countries,23 use among European colleges and schools of pharmacy is not widespread and European users’ opinions of this computer-assisted educational resource are not well known.

The objective of this study was to explore the perceptions and attitudes of European undergraduate pharmacy students regarding the use or potential use...
of virtual patient technology during their pharmacy education, and to use these findings as a starting point for a more comprehensive survey of pharmacy education programs and students in those programs.

METHODS

The research followed a descriptive, observational cross-sectional design that used a printed self-administered survey instrument to gather data. The aim was not to obtain a statistical representation of users’ of virtual patient technology in the European pharmacy student population, but to create a first portrayal of how this technology is being used.

Following ethical approval by the University of Lisbon’s Faculty of Pharmacy’s ethics committee, European Pharmaceutical Students’ Association’s (EPSA’s) executive board gave its informed consent to conduct the survey. EPSA encompasses 28 European pharmacy student associations as well as individual members. The study was introduced and survey instrument administered during a plenary session of EPSA’s 34th Annual Congress in April 2011, in Lisbon. After being informed about the study’s purpose and implications, participants voluntarily completed the questionnaire. The data from this convenience sample were collected anonymously and handled confidentially. In a culturally diverse group that encompassed different countries and universities, researchers were aware that differences might exist in study participants’ concepts of virtual reality and virtual patient technology. Thus, to avoid any associated bias, the survey instrument followed the virtual patient technology model definition proposed by Keele University,9 which defines virtual patient technology as “an interactive learning system that creates a computer-simulated environment of patient real-life scenarios.” This definition was included in the survey preamble. In order to contextualize the scope of the survey instrument further, the preamble contained the following additional information: “Interaction with virtual patients occurs in a simulated reality created by computer software, with animated images and sounds, where the student talks and listens to the patient, as well as dealing with patient’s emotions.”

Following the preamble, there were 3 main sections to the questionnaire. The first was directed at participants who had experience in computer-based interaction with virtual patients. The second was designed for respondents who had not yet used virtual patient technology but considered themselves potential virtual patient technology users because they had experience using other forms of computer-assisted education, such as Web-based learning, digital network collaboration, or other audio/video-based media. Apart from factual data-gathering, these 2 sections also comprised a set of sentences, related to respondents’ virtual patient technology use or potential use (7 and 4 items, respectively), and the perceived impact these had or would have in the learning process. These items were rated on a 5-point Likert scale, ranging from “strongly disagree” to “strongly agree.” Survey items were developed based on findings from a literature review25,26 and were intended to assess participants’ attitudes, without any psychometric aims. The third section solicited participants’ demographics, including their computer proficiency, which students rated on a 7-point Likert scale. Descriptive statistics as well as some inferential analyses were performed, with a significance level set at p<0.05 for all tests.

RESULTS

There were 304 registered participants in the EPSA congress representing 72 universities in 26 different European countries. The majority (68.3%) were female; fourth- and fifth-year students were the most widely represented, comprising 50.8% of all registered participants (including internship students).

One hundred ninety-four respondents from 46 different universities completed a survey instrument, resulting in a 63.8% participation rate. Responses were deemed valid if respondents either claimed to have or not have experience with virtual patient technology in their pharmacy education. There were missing responses from congress participants representing the Czech Republic, Hungary, and Serbia. Approximately 70% of the student respondents were female and 90.0% were between 19 and 23 years of age. Although 26 different nationalities were represented, all but 1 student (an Iraqi) were European. There were no significant differences in age, gender, and country and university of origin between the respondents and all registered congress participants (p>0.05). Table 1 presents students’ origin by country and university.

Of 194 European pharmacy students, only 12 (6.2%) had experience with virtual patient technology (designated in Table 1 with an asterisk), while 182 respondents (93.8%) reported no experience with this technology. In the virtual patient users’ group, 3 respondents had experienced patient simulation that used 3-dimensional images and sound, whereas 9 described using other forms of electronic patient simulation, such as animated 2-dimensional images, with or without sound. Eight students had used virtual patient technology that involved selecting from multiple-choice items and text boxes or hearing audible responses from the virtual patient. For 3 respondents who had used virtual-reality systems, the experience included listening to and speaking with virtual
Table 1. Countries (n=23) and Universities (n=46) Represented by Respondents to a Survey on Use of Virtual Patient Technology in Pharmacy Education

<table>
<thead>
<tr>
<th>Country</th>
<th>University</th>
<th>Survey Participants, No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulgaria</td>
<td>Medical University of Sofia, Bulgaria</td>
<td>2 (1.1)</td>
</tr>
<tr>
<td>Croatia</td>
<td>University of Pharmacy and Biochemistry, Croatia</td>
<td>5 (2.7)</td>
</tr>
<tr>
<td>Denmark</td>
<td>University of Copenhagen,* Denmark</td>
<td>5 (2.7)</td>
</tr>
<tr>
<td>Finland</td>
<td>University of Helsinki, Finland</td>
<td>4 (2.1)</td>
</tr>
<tr>
<td></td>
<td>University of Eastern Finland, Finland</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>France</td>
<td>University of Rennes, France</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td></td>
<td>University of Grenoble, France</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td></td>
<td>University of Reims, France</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>Germany</td>
<td>Ruprecht-Karls University of Heidelberg, Germany</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td></td>
<td>University of Freiburg, Germany</td>
<td>2 (1.1)</td>
</tr>
<tr>
<td></td>
<td>University of Bonn, Germany</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>Greece</td>
<td>University of Patras, Greece</td>
<td>4 (2.1)</td>
</tr>
<tr>
<td>Italy</td>
<td>University of Genoa, Italy</td>
<td>2 (1.1)</td>
</tr>
<tr>
<td></td>
<td>University of Catania, Italy</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>Latvia</td>
<td>University of Latvia, Latvia</td>
<td>3 (1.6)</td>
</tr>
<tr>
<td>Lithuania</td>
<td>Lithuanian University of Health Sciences, Lithuania</td>
<td>3 (1.6)</td>
</tr>
<tr>
<td>Macedonia</td>
<td>Ss. Cyril and Methodius University of Skopje, Macedonia</td>
<td>3 (1.6)</td>
</tr>
<tr>
<td>Malta</td>
<td>University of Malta, Malta</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>Norway</td>
<td>University of Bergen,* Norway</td>
<td>6 (3.2)</td>
</tr>
<tr>
<td></td>
<td>University of Oslo, Norway</td>
<td>3 (1.5)</td>
</tr>
<tr>
<td></td>
<td>University of Tromsø, Norway</td>
<td>5 (2.7)</td>
</tr>
<tr>
<td>Poland</td>
<td>Medical University of Warsaw, Poland</td>
<td>5 (2.7)</td>
</tr>
<tr>
<td>Portugal</td>
<td>University of Coimbra,* Portugal</td>
<td>9 (4.8)</td>
</tr>
<tr>
<td></td>
<td>University of Lisbon, Portugal</td>
<td>21 (11.2)</td>
</tr>
<tr>
<td></td>
<td>University of Porto, Portugal</td>
<td>7 (3.7)</td>
</tr>
<tr>
<td></td>
<td>Institute of Health Sciences Egas Moniz, Portugal</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>Romania</td>
<td>Carol Davila University of Medicine and Pharmacy, Romania</td>
<td>17 (9.1)</td>
</tr>
<tr>
<td></td>
<td>Iuliu Hatieganu University of Medicine and Pharmacy, Romania</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td></td>
<td>Victor Babes University of Medicine and Pharmacy, Romania</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td></td>
<td>University of Cluj-Napoca,* Romania</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>Slovenia</td>
<td>University of Ljubljana, Slovenia</td>
<td>17 (9.1)</td>
</tr>
<tr>
<td>Spain</td>
<td>University of Santiago de Compostela, Spain</td>
<td>2 (1.1)</td>
</tr>
<tr>
<td></td>
<td>University of Alcalá de Henares, Spain</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>Sweden</td>
<td>Uppsala University, Sweden</td>
<td>9 (4.8)</td>
</tr>
<tr>
<td></td>
<td>University of Gothenburg,* Sweden</td>
<td>2 (1.1)</td>
</tr>
<tr>
<td>Switzerland</td>
<td>ETH Zurich, Switzerland</td>
<td>2 (1.1)</td>
</tr>
<tr>
<td></td>
<td>University of Basel, Switzerland</td>
<td>3 (1.6)</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>University of Utrecht, The Netherlands</td>
<td>3 (1.6)</td>
</tr>
<tr>
<td></td>
<td>University of Groningen, The Netherlands</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>Turkey</td>
<td>Ege University, Turkey</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td></td>
<td>Hacettepe University, Turkey</td>
<td>10 (5.3)</td>
</tr>
<tr>
<td></td>
<td>Anadolu University, Turkey</td>
<td>4 (2.1)</td>
</tr>
<tr>
<td></td>
<td>Marmara University, Turkey</td>
<td>6 (3.2)</td>
</tr>
<tr>
<td></td>
<td>Istanbul University, Turkey</td>
<td>5 (2.7)</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>University of Portsmouth, United Kingdom</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td></td>
<td>University of Aston,* United Kingdom</td>
<td>2 (1.1)</td>
</tr>
<tr>
<td>Missing origin</td>
<td></td>
<td>7 (–)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>194 (100.0)</td>
</tr>
</tbody>
</table>
patients that had speech and voice recognition capabilities. Six students reported having experienced virtual patients within the context of a single subject or course, such as pharmacy practice or pharmacotherapy. The course(s) involving virtual patients were offered during 1 semester between years 2 and 4 of the students’ pharmacy education program. The other 6 students had used virtual patient technology more extensively, including but not limited to independent/individual study, work groups, case studies, as a lecture aid, in practical teaching, and as a supplementary resource. It was not possible to confirm length and depth of use (ie, beyond a semester or in multiple subjects).

Of the teaching/learning methods that are associated with use of virtual patient technology, the most common (n=9) occurred through a combination of work group and case study. Virtual patients were used mostly during lessons (n=8) and in lesson preparation (n=3), and to a lesser extent in lesson follow-up, examinations, or other forms of summative assessment (n=1). Only 2 students were aware of the point in time when virtual patient technology was implemented as mandatory to complete the pharmacy degree (before 2005). In most cases (n=5), virtual patient software was developed by their university or shared by another academic institution, but commercial solutions were also purchased (n=7).

When asked about their computer proficiency, the mean response of the subgroup of virtual patient technology users was 6.2 ± 0.9 on a 7-point scale on which 7 = excellent. The perceptions about virtual patient technology held by students who claimed to have experience using and mastery of Internet technology are displayed in Table 2. In this small, non-representative sample, the mean values of all items were on the positive side of the Likert scale; however, some respondents did express negative opinions (disagreed or strongly disagreed) about the following items: virtual patient technology gave me an insightful learning experience, (8.3%); learning with virtual patients was important to performing well on the final examination (16.7%); easy access to virtual patients at my convenience (25.0%); and a combination of virtual patients and teaching events enhanced clinical reasoning skills (9.1%). Bivariate nonparametric Spearman correlations were computed, showing a strong positive correlation between “virtual patient content and corresponding teaching events complemented each other well” and “virtual patients gave me an insightful learning experience, which I wouldn’t have had from corresponding teaching events alone.” (rho=0.74; p=0.006). A negative correlation was found between “virtual patient content and corresponding teaching events complemented each other well” and “combination of virtual patient technology and corresponding teaching events made me feel better prepared to care for a real life patient” (rho=-0.67; p=0.025).

Of the 182 respondents who described themselves as not having experienced virtual patient technology, 72.9% had used e-learning resources in their curriculum, 52 (29.1%) of whom indicated they had used blended-learning resources. There was no significant difference between the use of synchronous (52.9%) and asynchronous (47.1%) systems. When questioned about the need for virtual patient technology in their curriculum, 83.5% agreed they should be used. Of these, 68.1% asserted that the greatest need for virtual patient technology is in teaching and to a lesser extent in assessment (15.4%) but that virtual patients are especially useful in practical individual learning (73.8%). Students’ self-assessed their computer proficiency as 5.0 ± 1.3 on a 7-point scale. This value was lower than the mean for the students who reported virtual patient technology use (p=0.003). Table 3 presents the perceptions of non-virtual patient technology

<table>
<thead>
<tr>
<th>Survey Item</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP-related content and correspondent teaching events complemented each other well</td>
<td>4.3 (0.7)</td>
</tr>
<tr>
<td>VPs gave me an insightful learning experience, which I wouldn’t have had from corresponding teaching events alone</td>
<td>3.9 (0.9)</td>
</tr>
<tr>
<td>Learning with VPs is important in order to do well in the final examination for the course</td>
<td>3.7 (0.9)</td>
</tr>
<tr>
<td>Easy access to VPs at my convenience</td>
<td>3.4 (1.3)</td>
</tr>
<tr>
<td>Combination of VPs and corresponding teaching events enhanced my clinical reasoning skills</td>
<td>3.9 (1.0)</td>
</tr>
<tr>
<td>Combination of VPs and corresponding teaching events made me feel better prepared to care for a real life patient</td>
<td>4.3 (0.8)</td>
</tr>
<tr>
<td>Overall, the combination of VPs and corresponding teaching events was a worthwhile learning experience</td>
<td>4.6 (0.7)</td>
</tr>
</tbody>
</table>

Abbreviations: VP = virtual patient.

* 5-point Likert scale on which 1 = strongly disagree and 5 = strongly agree.

b Not all respondents answered this item.
DISCUSSION

Simulation-based medical education has been used since the 1970s and has covered many different objectives, including student feedback on instructor training as well as skill acquisition and maintenance as an outcome measurement.26 The first decade of the 21st century has seen many developments in computer-assisted instruction, ranging from applications on the World Wide Web27 to dynamic interactions, provider and patient bidirectional communication, often described as virtual patients.28,29

Virtual patient technology in pharmacy education has been available at only a few institutions since the mid-2000s, with their usage in Europe being uncommon. The existence of somewhat sophisticated clinical cases, presented through computer programs and providing access to shared IT platforms, would suggest greater use of virtual patient technology. However, advanced dedicated-software solutions, designed to mimic real patient interactions as closely as possible in a virtual scenario, making use of 3-dimensional images and sound, still do not appear to be common in European pharmacy education today. It seems that most European universities have not invested in IT solutions for this purpose, despite contemporary society’s dependence on computers for a vast array of activities, ranging from simple interpersonal communication to social networking. Although IT is widely accessible and actual virtual patient technology initiatives in healthcare education exist, its low implementation in pharmacy education within a European matrix of culturally and economically diverse countries is somehow intriguing.

To augment implementation, the development of virtual patient scenarios applicable to all health care professions and resource sharing among professions and institutions has been encouraged.30 One example of cooperation in this area is the European eViP initiative (http://www.virtualpatients.eu/), which works with interactive computer simulation of real-life clinical scenarios for medical training, education, or assessment. This project (now closed), co-funded by the European Commission, was designed to be culturally adaptable and to address other healthcare professions. Although endorsing the importance of virtual patient technology as an educational tool for future pharmacists, there has been little or no transposition of eViP to European pharmacy education.

Table 3. Perceptions Regarding Educational Use of Virtual Patient Technology Among European Pharmacy Students With No Virtual Patient Experience (N=182)

<table>
<thead>
<tr>
<th>Survey Item</th>
<th>Respondents, No. (%)a</th>
<th>Mean (SD)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>I believe computers are indispensable tools for my learning process.</td>
<td>173 (95.1)</td>
<td>4.1 (1.2)</td>
</tr>
<tr>
<td>I believe e-learning platforms are helpful to improve my learning skills.</td>
<td>175 (96.2)</td>
<td>4.0 (1.1)</td>
</tr>
<tr>
<td>I believe using VPs would help me to improve my communication skills.</td>
<td>173 (95.1)</td>
<td>3.8 (1.1)</td>
</tr>
<tr>
<td>Overall, I think VPs would be a good asset to my educational process.</td>
<td>174 (95.6)</td>
<td>3.9 (1.0)</td>
</tr>
</tbody>
</table>

Abbreviations: VPs=virtual patients.

a Not all respondents answered all items.
b 5-point Likert scale on which 1=strongly disagree and 5=strongly agree.
This deficit may be primarily related to the medical focus of the project but also indicates, to some extent, the need for pharmacy-related influence and involvement in advanced educational projects.

Despite the scarcity of virtual patient technology use in European pharmacy education, the undergraduates who reported using virtual patients were reasonably satisfied with their experience. The most unfortunate aspect was the lack of easy access to virtual patient technology, which suggests that the systems in use may not be simple computer software or Web-based applications, but rather may involve sophisticated electronic equipment associated with the production of realistic virtual scenarios. On the other hand, the use of virtual patient technology in conducting examination was considered less effective, suggesting that virtual technology may still be viewed by some as experimental and not reliable as an assessment tool.

Based on their responses, even if students believed that electronic patient simulation had a positive impact on learning, they were not as confident that knowledge and skills gained through use of virtual patient technology would be helpful/advantageous in a real-life situation. This is an interesting observation, as simulation is a well-established training method in medical science and even mandatory in professions such as aviation. Students expressed doubts as to the actual capacity of virtual patient technology to accurately portray real-life situations in a comprehensive way. Therefore, while suggesting that virtual patient technology offers an imperfect approach to reality, users of this resource discredit the potential training benefits or are unhappy with the degree of authenticity.

The vast majority of pharmacy graduate respondents who had not had experience with virtual patient technology believed it to be advantageous as a supplementary knowledge tool or in skill development, but, again, not necessarily as a method for assessing that expertise or skill. This disparity between the usefulness of virtual patient technology in learning and assessment denotes a lack of confidence in virtual patient applications as a sound method for establishing a course or examination grade. However, methods for using virtual patient programs as assessment tools in medical and nurse education may involve sophisticated electronic equipment associated with the production of realistic virtual scenarios. On the other hand, the exact number of congress participants might represent the actual student population at large, and any comparisons between users and non-users subsamples should be done with caution. On the other hand, the exact number of congress participants may have been greater than 304, primarily because of some unregistered Portuguese participants representing universities with limited implementation of virtual patient technology.

Study limitations include a convenience sampling strategy, low rate of participation, and information bias. Although this study was exploratory by nature, there is no information on how congress participants might represent the actual student population at large, and any comparisons between users and non-users subsamples should be done with caution. On the other hand, the exact number of congress participants may have been greater than 304, primarily because of some unregistered Portuguese participants representing universities with limited implementation of virtual patient technology.

Although the survey preamble and individual questions included an introductory text outlining the definition of a virtual patient, not all respondents may have interpreted the concept in the same way, accounting for random variations in replies that are impossible to quantify. There were 3 countries (Latvia, Lithuania, and Sweden) in which participants might not have experienced virtual patient technology, considering that none of those students had reached the later stages of their degrees program (ie, fifth or sixth year). Additionally, there were only a few respondents from each country, which limits conclusions about national differences.
CONCLUSIONS

Virtual patient technology use in Europe is not as common in pharmacy education as in medicine and nursing education. Although individual universities may have developed or purchased virtual patient software, which in both cases implies heightened consumption of financial and other resources, a collective European initiative toward developing common pharmacy virtual patient scenarios would be a first step to implementing this valuable resource in pharmacy education. Such an initiative seems especially relevant given the specificities of pharmacists’ work with patients, in particular to what concerns nonprescription drug counseling and medication therapy management.

ACKNOWLEDGEMENTS

The authors thank the EPSA executive board members, as well as Lisbon 2011 conference organizers and participants.

REFERENCES