A Study of Flow-based Models for the Electric Vehicle Routing problem

Daniel Rebelo dos Santos

Dissertação orientada pelo Professor Doutor Luis Eduardo Neves Gouveia

DISERRTAÇÃO

Mestrado em Estatística e Investigação Operacional

Especialização em Investigação Operacional

2015
I would first like to thank my girlfriend for always putting me on the right track and for all her support. This thesis would never have existed if it was not for her.

Secondly I would like to thank my adviser Professor Luis Eduardo Neves Gouveia, who I truly admire for all he has accomplished in his career. It is a privilege to be advised by someone who has worked with many different people around the world in the field of Operations Research and is undoubtedly one of the best in his area of research.

I would also like to leave a special thank you to Mario Ruthmair for all his help and availability, but specially for sharing the same enthusiasm as me therefore motivating me even further.

Last, but not least, I would like to thank my mother for taking great care of me and, of course, paying for and supporting my education.

Daniel
Abstract

In this dissertation we study a generalization of the classical Traveling Salesman and Vehicle Routing problems in which the vehicles are electric. We assume that an electric vehicle has a maximum battery charge that may not be enough to allow the vehicle to complete the tour given by the classical problem’s optimal solution therefore leading to having to consider different routes with possibly worse costs.

The Electric Vehicle Routing Problem is defined on a graph with a depot and a set of clients. Each client has a strictly positive demand and, in our case, we consider a pick-up variant, i.e., the load of the vehicle increases during the route. The graph’s arcs are characterized by their travel cost, the energy consumed by an empty vehicle and the additional energy consumed per load unit. The energy values can be negative if there is energy recuperation (e.g. on a downward slope). We consider an homogeneous fleet with fixed maximum capacity and fixed maximum energy level.

The objective of the Electric Vehicle Routing Problem is to determine a set of routes with minimal total costs such that the/every route starts and ends on the depot, each client is visited exactly once, the total demand of the clients on the/a route does not exceed the load capacity and the energy level of every vehicle stays within its limits.

We present and evaluate flow-based models, with both aggregated and disaggregated versions, and experiment with branch-and-cut methods based on simple valid inequalities which exist for the Traveling Salesman or Vehicle Routing problems. We also consider models with recharging stations that allow a vehicle to fully recharge its battery mid-route.

Finally we discuss some results alongside future planned work.

Keywords: Traveling Salesman Problem, Vehicle Routing Problem, Electric vehicles, Flow-based models, Branch-and-cut algorithms
Resumo

Em anos recentes tem-se visto um aumento do uso de veículos elétricos por parte de empresas que possuem frota de veículos. Um veículo elétrico exibe um comportamento bastante distinto de um veículo usual já que não pode funcionar durante largos períodos de tempo e necessita de recarregar a sua bateria de acordo com um processo frequente e bastante demorado. Além disso, a carga transportada por um veículo elétrico influencia a quantidade de energia gasta, algo que também ocorre com veículos usuais mas que não pode ser negligenciado no caso de um veículo elétrico pois o carregamento da bateria é, como foi referido, um processo demorado e que, portanto, quer-se que seja realizado o menor número de vezes possível.

A introdução de veículos elétricos também conduz a outro tipo de aspectos a considerar relativamente à topologia da rede de estradas e clientes subjacente ao problema. Uma rua a subir implica um maior consumo de energia por parte de um veículo elétrico, enquanto que uma rua a descer pode até permitir a recuperação de energia. Além disso, temos também de considerar um conjunto novo de vértices, do grafo representativo da rede de estradas, referente às possíveis estações de recarga para os veículos elétricos.

O Electric Vehicle Routing Problem (EVRP) é então uma variante dos problemas clássicos do Traveling Purchaser Problem (TSP) e do Vehicle Routing Problem (VRP) em que são considerados veículos com motor elétrico. Apesar das formulações naturais do TSP e do VRP considerarem apenas variáveis que modelam os arcos na(s) rota(s) para os veículos, no EVRP isso não é suficiente e, desta forma, é necessário considerar não só variáveis de fluxo para a carga do veículo mas também variáveis de fluxo que representem o nível de energia do veículo. Assim, os modelos matemáticos para o EVRP apresentam dois sistemas de fluxo em que o sistema de fluxo de energia depende do sistema de fluxo de carga.

O foco desta dissertação é estudar modelos de fluxo, tanto agregados como desagregados, baseados em adaptações de modelos de fluxo existentes para o TSP e o VRP aos quais se adiciona, de forma provavelmente não trivial, o sistema de fluxo de energia. Pretende-se assim perceber de que forma este novo sistema de fluxo influencia a complexidade do problema e se os métodos atualmente utilizados para resolver o TSP e o VRP podem ou não ser bem sucedidos quando aplicados diretamente ao EVRP. Além disso
é do maior interesse estudar modelos com dois sistemas de fluxo em que um depende do outro. Note-se que apenas se pretendem métodos exatos e não heurísticos.

O EVRP é definido num grafo $G = (V,A)$ onde $V = \{1, \ldots, n\}$ é o conjunto de vértices (o vértice 1 representa o depósito) e A é o conjunto de todos os arcos existentes a conectar os vértices de V. O conjunto $V_c = V \setminus \{1\}$ representa o conjunto dos clientes e cada cliente tem uma procura q_i estritamente positiva associada. De forma a simplificar os modelos apresentados nesta dissertação, assume-se que $q_1 = 0$ e seja Q a soma de toda a procura em V. A cada arco $(i, j) \in A$ associa-se um custo de utilização c_{ij} e assume-se que os custos são simétricos, isto é, $c_{ij} = c_{ji}$.

Até este ponto não existe grande diferença entre o EVRP e os problemas clássicos do TSP e do VRP. Contudo, no EVRP associamos também a cada arco os valores α_{ij} e β_{ij}. O primeiro indica a quantidade de energia gasta ao atravessar o arco (i, j) independentemente da carga transportada, ao passo que o segundo indica a energia consumida por cada unidade adicional de carga transportada aquando da utilização do arco (i, j). Note-se que estes valores podem ser negativos e, nesse caso, o “gasto” de energia é de facto um ganho de energia. Além disso note-se também que se pode considerar que G é completo pois, caso não seja, é possível calcular os valores em falta com base em algoritmos de caminho mais curto.

Para o estudo nesta dissertação a função de consumo de energia utilizada é dada por $E_{ij}(l) = \alpha_{ij} + l \times \beta_{ij}$, em que l é a carga do veículo. Na prática qualquer função real pode ser utilizada, contudo esta definição é não só linear como também incorpora dois aspetos práticos importantes que são o consumo base de energia e o consumo adicional conforme a carga transportada.

Nesta dissertação apresentam-se modelos de fluxo para dois tipos de variante: a variante do TSP e a variante do VRP. Na variante do TSP temos apenas um veículo que deve servir toda a procura dos clientes. O objetivo é encontrar uma rota de custo mínimo para esse veículo que comece e termine no depósito, que permita que o veículo visite cada cliente uma e uma só vez e que garanta que o nível de energia do veículo elétrico se mantém dentro dos seus limites, isto é, entre 0 e B, sendo B a energia máxima na bateria. Na variante do VRP considera-se a possibilidade de utilizar vários veículos com um objetivo similar, ou seja, encontrar um conjunto de rotas.
de custo mínimo em que cada rota começa e acaba no depósito, cada cliente é visitado uma e uma só vez, o nível de energia dos veículos mantém-se dentro dos seus limites e cada veículo não transporta mais do que a sua carga máxima, a qual se representa por C. Também são apresentados modelos que incluem estações de recarga que são definidos num grafo especial e estendido, todavia não são apresentados resultados respeitantes a estes modelos já que se decidiu estudar primeiro as variantes do EVRP sem estações de recarga.

Para a resolução dos modelos e obtenção de resultados de teste foram desenvolvidos métodos de planos de corte com base em desigualdades válidas existentes para o TSP e o VRP. Isto é possível pois os modelos incorporam a modelação do TSP ou do VRP pelo que qualquer resultado que envolva apenas a parte do modelo que não considera a energia continua a ser válido para o EVRP. Estes métodos foram implementados utilizando o software CPLEX 12.6.1 e a sua Concert Technology para C++. O programa final desenvolvido está pronto para ser utilizado por qualquer utilizador que o pretenda. Os resultados de teste foram obtidos com recurso a instâncias geradas.

A principal conclusão que se retira deste estudo é a de que não é esperável que as abordagens com métodos exatos usadas para o TSP e o VRP sejam suficientes para resolver o EVRP. O que se pode verificar pelos resultados obtidos é que as desigualdades válidas utilizadas não conseguem lidar com o aumento dos gaps da relaxação linear relativamente ao valor ótimo que se verifica à medida que o valor de B diminui. Contudo, uma das abordagens de planos de corte utilizada produziu alguns resultados interessantes mas, não obstante, insuficientes.

Estas conclusões levam a que, como trabalho futuro, se pretenda explorar o sistema de fluxos de energia ao invés de nos focarmos apenas no que já existe para o sistema de fluxos da carga. Isto pode ser feito, por exemplo, com recurso a uma abordagem de discretização dos modelos e consequente descoberta de desigualdades válidas para este novo sistema de fluxo de energia.

Palavras-chave: Traveling Salesman Problem, Vehicle Routing Problem, Veículos elétricos, Modelos de fluxo, Algoritmos de planos de corte
Contents

List of Figures x

List of Tables xii

List of Algorithms xiv

1 Introduction 1

2 Problem description 5

2.1 General information 5

2.2 The TSP variant 7

2.3 The VRP variant 8

2.4 Recharging stations 8

3 Formulations 11

3.1 EVRP with one vehicle - TSP variant 11

3.1.1 Aggregated base model with only upward arcs 12

3.1.2 Aggregated base model with upward and downward arcs 14

3.1.3 Disaggregated base model with only upward arcs 17

3.1.4 Disaggregated base model with upward and downward arcs 19

3.1.5 Aggregated base model with Connectivity Cuts 20

3.2 EVRP with multiple capacitated vehicles - VRP variant 21

3.2.1 Aggregated base model with only upward arcs 21

3.2.2 Aggregated base model with upward and downward arcs 22

3.2.3 Disaggregated base model with only upward arcs 23

3.2.4 Disaggregated base model with upward and downward arcs 24
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.5</td>
<td>Aggregated base model with Connectivity Cuts</td>
<td>24</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Aggregated base model with Rounded Capacity Cuts</td>
<td>24</td>
</tr>
<tr>
<td>3.3</td>
<td>EVRP with recharging stations</td>
<td>25</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Aggregated base model (one vehicle)</td>
<td>25</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Aggregated base model (multiple capacitated vehicles)</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Branch-and-cut methods</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>Overview on branch-and-cut methods</td>
<td>29</td>
</tr>
<tr>
<td>4.2</td>
<td>CPLEX’s Concert Technology for C++</td>
<td>31</td>
</tr>
<tr>
<td>4.3</td>
<td>Specifics of the implementation</td>
<td>32</td>
</tr>
<tr>
<td>4.3.1</td>
<td>How to use</td>
<td>32</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Instance format</td>
<td>34</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Branch-and-cut method with the separation of Connectivity Cuts</td>
<td>35</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Branch-and-cut method with the separation of Rounded Capacity Cuts</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>Test results</td>
<td>39</td>
</tr>
<tr>
<td>5.1</td>
<td>The test instances</td>
<td>39</td>
</tr>
<tr>
<td>5.2</td>
<td>TSP variant</td>
<td>40</td>
</tr>
<tr>
<td>5.3</td>
<td>VRP variant</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>Conclusions and future work</td>
<td>49</td>
</tr>
<tr>
<td>6.1</td>
<td>Main conclusions</td>
<td>49</td>
</tr>
<tr>
<td>6.2</td>
<td>Future work</td>
<td>50</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>51</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Pick-up and delivery variants are not the same in the EVRP.</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>An example with downward arcs.</td>
<td>15</td>
</tr>
<tr>
<td>3.2</td>
<td>An example with an upward arc.</td>
<td>15</td>
</tr>
<tr>
<td>3.3</td>
<td>The issue with the linear approach considered.</td>
<td>16</td>
</tr>
<tr>
<td>4.1</td>
<td>Example of an input file.</td>
<td>35</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>#</th>
<th>Table Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Results for the TSP variant. The running times were obtained on a single 3.6 GHz thread</td>
<td>41</td>
</tr>
<tr>
<td>5.2</td>
<td>Results for the VRP variant. The running times were obtained on a single 3.6 GHz thread</td>
<td>43</td>
</tr>
</tbody>
</table>
List of Algorithms

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Separation of Connectivity Cuts</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Separation of Rounded Capacity Cuts</td>
<td>37</td>
</tr>
<tr>
<td>4.3</td>
<td>Cut routine for fractional solutions using RCC and CC separation</td>
<td>37</td>
</tr>
<tr>
<td>4.4</td>
<td>Separation of Rounded Capacity Cuts (weak version)</td>
<td>38</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

Route-optimization is a technique we are used to do intuitively in our daily lives. If we are at the Faculty of Sciences of the University of Lisbon (FC) and need to go to Marquês de Pombal (MP), Saldanha (S) and Campo Grande (CG), and in the end return to the starting point while minimizing the total distance traveled, then surely we would not choose the route FC \rightarrow S \rightarrow CG \rightarrow MP \rightarrow FC as MP and S are on one side of Lisbon while CG is on the opposite side of Lisbon. We would choose a route such as FC \rightarrow S \rightarrow MP \rightarrow CG \rightarrow FC for example.

This example is small - we only have 4 different places to consider - and so it is relatively easy to find the optimal solution without needing any other help besides our (or someone else’s) knowledge of Lisbon. What happens if we need to visit not only 4 places but more than 100? For example, medicine distribution vans working in Lisbon may need to visit multiple pharmacies in a single day. Determining the optimal route when there are many different places to visit can not be done so easily. One way to do it is to use mathematical models which capture reality, simplify it and attempt to provide solutions for the problems they model.

The classical Traveling Salesman Problem (TSP) asks the following question: “Given a list of cities (or places in a city) to visit and the distances between each pair of cities, what is the shortest feasible route that visits each city exactly once returning in the end to the city of origin?” It was first formulated in 1930 by Karl Menger as the “messenger problem” and, since then, the TSP has been studied all over the world and many articles have been and are still being published regarding this problem. It is one
of the most studied problems in the Operations Research field. The book edited by Lawler et al. [1] in 1985 gives an insight of all that was known regarding the TSP until that date, while a more recent survey can be seen in [2]. Both these survey books provide information on many different possible variants to the TSP.

Returning to our previous example, suppose that we would like to visit the exact same places (MP, S and CG) but that we now have a friend willing to help us perform the task. Our intuition would tell us that one of us would do the route FC → S → MP → FC while the other would do the route FC → CG → FC, in order to minimize the total distance traveled by both. If we want to consider a larger-scaled example we can suppose that we have two medicine distribution vans instead of one and we now aim to establish two routes, one for each van, so that all pharmacies are visited and the total distance covered by both vans is minimized. This extension to the classical TSP leads to a new problem altogether in which we aim to visit every “city” exactly once like in the TSP but we are allowed to use more than one “vehicle” to do so. Note that “cities” can be anything from pharmacies to stores and even target strings to compute DNA sequences while a “vehicle” can be an actual vehicle or a mailman distributing mail by walking from door to door.

The classical Vehicle Routing Problem (VRP) is another of the most studied problems in the Operations Research field and it is a natural extension to the TSP by considering the possibility of multiple vehicles operating at the same time. It has been studied for many years now, starting in 1959 with Dantzig and Ramser with the name “The Truck Dispatching Problem” [3] in its most basic form. With the increasing complexity of real-life problems, the VRP, like the TSP, has had many different variants considered, each adding their own specific component such as vehicle capacities or time-windows. Every level of complexity added makes the problem harder and harder to solve. The book by Toth and Vigo [4] provides a survey on the current (as of 2014) state-of-the-art in terms of exact and heuristic algorithms for the VRP and its many variants.

In recent years we have seen the increase in the usage of electric vehicles and several companies have started to incorporate them in their fleets. An electric vehicle exhibits a very different behavior from the one shown by a vehicle with a regular combustion engine since it can not function for very
long periods of time, needing a battery recharge more often than a regular
vehicle needs a fuel refill. For a classical TSP or VRP instance, it is generally
safe to assume that a vehicle does not need to stop in order to refill its tank
and, if it does, the time taken can be considered negligible. Electric vehicles
on the other hand need regular and lengthy battery recharges.

The vehicle load at a given time also affects the amount of fuel used. Even
though for the classical TSP or VRP this real-life complexity can be
excluded from the models, such can not be said about electric vehicles. In
fact, knowing that an electric vehicle is loaded is as important as knowing
the exact weight of the load since the energy consumption depends on both
these factors.

The need to control the battery level also leads to having to consider
other topological aspects of the graph used to represent the network of clients
and roads. It is now important to know the slope of a given road. Upward
slopes consume more energy whereas downward slopes may even allow en-
ergy recuperation. Not only that but we need to also consider additional
nodes in the graph that model the possible set of recharging stations in our
network.

All of these aspects need to somehow be incorporated in classic TSP and
VRP models and thus a new variant was created and named Electric Vehicle
Routing Problem (EVRP). In its lowest level of complexity we consider only
the network with clients and roads and without recharging stations. Both
the TSP and VRP variants can be considered, that is, either a single vehicle
or multiple vehicles. This lowest level of complexity may not have direct
practical application but is nonetheless helpful in understanding how the
models behave.

The main difference between TSP/VRP and EVRP is that TSP or VRP
models do not need to incorporate a set of variables to model the vehicle
load. Both the TSP’s and VRP’s natural formulation are written with a
single set of variables that model the arc selection. EVRP models on the
other hand not only need a set of variables to model the vehicle load but
also a new set of variables that model the energy levels. We then have a
model with two sets of flow variables and systems in which the energy flow
depends on the load flow.

To the best of our knowledge not much work has been developed re-
lated to the EVRP. One published article that addresses alternative fuels is
The authors of [6] address pollution issues in a different variant of the VRP. The EVRP is also reviewed in [8] and the authors consider both time-windows and recharging stations for the electric vehicles. A very recently published work also addresses the EVRP with time-windows and recharging stations - [7]. These last two references propose heuristic-based solution methods however.

The focus of this thesis is to study flow-based models for the EVRP starting with its less complex variants. We are interested only in models used to find the optimal solution unlike the authors of [7] and [8]. The models used are based on straightforward adaptations of single-commodity and multi-commodity flow models used for classical TSP and VRP problems but with the probably not so trivial addition of the energy flows. The purpose is to understand how the extra energy flow in the models influences the complexity of the problem and whether or not the current exact methods for the TSP and VRP could be successful when directly applied to the EVRP variant.

We start by describing the problem in the second chapter. In the third chapter we present the basic models for the TSP and the VRP variants while the following chapter explains the methodology used to solve them, specifically a branch-and-cut method based on connection cuts and another branch-and-cut method that utilizes rounded capacity cuts that replace the capacity constraints. In the fifth chapter we analyze the results from randomly generated instances and present some conclusions and future work in the final chapter.
Chapter 2

Problem description

In this chapter we define the Electric Vehicle Routing Problem (EVRP) and the variants studied in this thesis. Section 2.1 will include general information regarding the problem while the subsequent sections will emphasize on each of the variants considered.

2.1 General information

The EVRP is defined on a graph $G = (V, A)$ where $V = \{1, \ldots, n\}$ is the set of vertices (vertex 1 represents the depot) and A is the set of all existing arcs connecting the vertices. The set $V_c = V \setminus \{1\}$ represents the set of clients and each has a strictly positive demand q_i associated. To simplify the formulations in the next chapter we consider $q_1 = 0$. Let Q be the sum of the demands over the set V. To every arc (i, j) we associate a cost c_{ij}. We will consider symmetric costs, that is, $c_{ij} = c_{ji}$ for any arc $(i, j) \in A$.

Up to this point the problem does not differ from the classical Traveling Salesman Problem (TSP) or Vehicle Routing Problem (VRP). However, in the EVRP we also associate two more values to each arc. Let α_{ij} be the energy loss for traversing arc (i, j) regardless of the vehicle load and let β_{ij} be the energy loss per load unit on arc (i, j). Both these values can be negative. In that case, the energy “loss” on the corresponding arc is actually an energy gain. This situation could happen in real-life instances on downward roads, for example. Note that we can consider the graph to be complete because, even if it is not, we can compute any missing cost and energy consumption values by using shortest path algorithms.
Given the current vehicle load \(l \) on arc \((i, j)\), let \(E_{(i,j)}(l) \) represent the real-valued function that returns the total energy consumption of the vehicle on that arc. This definition allows any non-linear function to be used however, if we are to use a linear model, we need to either discretize this function or use a good linear approximation. In our case we simply considered the function to be linear and set it to: \(E_{(i,j)}(l) = \alpha_{ij} + l \times \beta_{ij} \), i.e., the energy consumption of a vehicle with load \(l \) on arc \((i, j)\) is the sum of the fixed energy consumption with the load-dependant consumption. This assumption is actually stronger than the one used in [7] in which the authors consider an energy function of the form \(E_{(i,j)}(l) = r \times d_{ij} \), which means it is not load-dependant but merely multiples the value \(d_{ij} \) which is the travel distance on arc \((i, j)\) and \(r \) which is the constant charge consumption rate. In our notation this corresponds to \(E_{(i,j)}(l) = \alpha_{ij} \). The extension we consider is very beneficial in practical applications since an electric vehicle consumes more energy if its load is maximal than if it is empty.

We consider the pick-up variant of the problem and so the vehicle or vehicles will start with load 0 and monotonically increase it as they visit the set of clients. An important aspect to note is that, contrary to the classical TSP and VRP problems, the pick-up variant of the EVRP is not the same as the delivery variant. On the classical TSP and VRP problems, we do not need to specify which variant we consider for interpreting the problem because they are equivalent solution-wise whereas with the EVRP case that is not necessarily true. It could be the case that a feasible solution for the pick-up variant is not feasible for the delivery variant. Consider the example on figure [2.1]. The numbers above the nodes are the demands and the numbers above the arcs are the \(\beta \) values. Assume that \(\alpha_{ij} = 0 \) for all arcs.

If we follow the given route in a pick-up variant the total energy spent will be \(0 \times 5 + 1 \times 4 + 2 \times 3 + 3 \times 2 + 4 \times 1 = 20 \). If we follow the same route in a delivery variant (the vehicle starts with load 4) then the total energy spent will be \(4 \times 5 + 3 \times 4 + 2 \times 3 + 1 \times 2 + 0 \times 1 = 40 \). Therefore, if the maximum battery capacity of the vehicle is 30 for example, the route is feasible for a pick-up variant but not for a delivery variant.

Another aspect to discuss is related to the comparison to the classical TSP and VRP solutions. If \(v^* \) is the optimal value of a TSP or VRP instance and \(\bar{v} \) is the optimal value of an EVRP instance where we add \(\alpha \) and \(\beta \) values
to the previous TSP or VRP instance, then it must be true that $v^* \leq \bar{v}$. In fact, a set of routes feasible for the EVRP is surely feasible for the TSP or VRP defined in the same instance whereas a feasible solution for the TSP or VRP may be infeasible regarding the energy consumption - we will call these solutions energy-infeasible. One example of this can again be seen on figure 2.1. If we apply the same reasoning as before but choose a maximum battery capacity of 15 then the solution provided is energy-infeasible (pick-up variant) but it is surely feasible as a route when disregarding the energy. The set of feasible solutions for the EVRP is then much smaller than that of the TSP or VRP unless we set the maximum battery capacity of a vehicle to a large enough value such that every TSP or VRP solution is in the EVRP feasibility set.

What we hope to accomplish by studying the basic EVRP models is to understand how the optimal solution varies when we lower the value of the maximum battery capacity. In addition we are very interested in understanding how a model with two flows, in which one of the flows depends on the other one, behaves. Several projection results and valid inequalities exist for the load flow system but they do not seem to apply for the energy flow system due to it depending on the first. We also wish to study the possibility of solving the EVRP using only techniques developed for the TSP or VRP problems.

2.2 The TSP variant

In this variant we consider a single vehicle with a maximum battery capacity of B. As said before, the vehicle will collect the demand in a pick-up
variant therefore its load will increase during the route. The objective is to
determine a route with minimal costs such that:

- The route starts and ends at the depot;
- Each client $j \in V_c$ is visited exactly once;
- The energy level of the vehicle always stays between 0 and B.

We also assume that the vehicle leaves the depot fully charged.

2.3 The VRP variant

In this case we are given a fleet of homogeneous vehicles each with a maxi-
mum load capacity of C and a maximum battery capacity of B.

The objective now is to determine a set of routes with minimal costs
that satisfy the following conditions:

- Each route starts and ends at the depot;
- Each client $j \in V_c$ is visited exactly once;
- The total demand of the clients in a route does not exceed C;
- The energy level of each vehicle always stays between 0 and B.

Again we assume that every vehicle leaves the depot fully charged.

2.4 Recharging stations

The EVRP with recharging stations introduces a new set of nodes repre-
senting the recharging stations and the arcs connecting these nodes with
the existing client and depot nodes and with other recharging stations. Our
original graph is then extended to $G' = (V', A')$ in which $V' = V \cup V_r$, with
V_r the set of recharging station nodes, and $A' = A \cup A_r$, where A_r is the set
of arcs in which at least one node is in V_r (obviously there are no arcs from a
node to itself). We can consider once more that the graph is complete. We
assume that upon entering a recharging station a vehicle is fully charged and
leaves with B energy level, and we do not consider the depot a recharging
station.
There are a couple of observations that can be made. First it is clear that arcs connecting recharging stations can be used more than once by the same vehicle or by different vehicles. Similarly, arcs connecting the depot to a recharging station can be used more than once by different vehicles. Using two subsequent recharging stations can occur in cases where you cannot reach a client with only one battery charge or if going to the second recharging station is not possible directly due to a low state of charge.

Secondly, each recharging station can be entered at most \(2(n-1) \) times. In fact, you can enter a recharging station once per client and a maximum of \(n-1 \) times directly from the depot (if the solution is to use \(n-1 \) vehicles), either directly or through another recharging station. This observation leads us to construct a graph on which to solve the EVRP with recharging stations where we can force every node to be visited at most once, which simplifies the model at the cost of more variables. The idea behind this new graph is to extend \(G' \) with \(2(n-1) \) copies of each recharging station.

Let us consider \(G'' = (V'', A'') \) an extension to \(G' \) (which is then a second extension to \(G \)) where \(V'' = V \cup V'_r \), with \(V'_r \) the set of all \(2(n-1) \) copies of the recharging stations. The arc set \(A'' = A \cup A'_r \) is composed of all the arcs in the original graph \(G \), i.e., all the existent arcs considering only the depot and the clients, and \(A'_r \) which is constructed in the following way: the \(k \)-th copy of a recharging station, with \(k \in \{1, \ldots, n-1\} \), can only be accessed from the depot or from the \(k \)-th copy of another recharging station and the successor of the \(k \)-th copy of a recharging station can only be either client \(k+1 \) or the \(k \)-th copy of another recharging station. Similarly, the \((n-1+k) \)-th copy of a recharging station can only be accessed from client \(k+1 \) or the \((n-1+k) \)-th copy of another recharging station, while its successors can only be either the depot, the \((n-1+k) \)-th copy of another recharging station or another client. The properties of the arcs in \(A'_r \) are inherited from the corresponding arcs in \(A_r \).

What this arc set guarantees is that if the \(k \)-th copy of a recharging station, with \(k \in \{1, \ldots, n-1\} \), is accessed then it had to be accessed by a vehicle which has not yet visited any clients, i.e., the vehicle came straight from the depot (directly or through another recharging station), and since there are \(n-1 \) copies of this kind, then we can reserve one for each possible vehicle and so every \(k \)-th copy will only be visited at most once. This arc set also guarantees that if the \((n-1+k) \)-th copy of a recharging station is
accessed then it was done so either from the \((n-1+k)\)-th copy of another recharging station or directly after client \(k+1\). Since every client is visited exactly once, we can also assure that any \((n-1+k)\)-th copy of any recharging station in visited at most once.

Note that, if we know that the maximum number of numbers of vehicles is less then \(n-1\), we can reduce this graph’s size in respect to the copies which serve the purpose of receiving vehicles straight from the depot. In the TSP variant for example we only need \(n = 1 + n - 1\) copies of each recharging station - one copy per client and one related to the depot.

The objective of the EVRP with recharging stations is the same as before, considering either one or multiple vehicles. We aim to find a route or a set of routes that minimize the total cost while guaranteeing that every route starts and end at the depot, every client is visited exactly once, the capacities of the vehicles are satisfied (if applicable), and the energy levels always stay within their bounds. Due to the extended graph \(G''\) we also need to assure that every copy of a recharging station is visited at most once.
Chapter 3

Formulations

In this chapter we will present every model used throughout this thesis. We start off with the Traveling Salesman problem (TSP) variant models which are divided into aggregated load flow and disaggregated load flow, and upward only or upward and downward arcs, i.e., non-negative α and β values or both negative and non-negative. We will also present a set of inequalities which we will use with the aggregated version of the models in an attempt to improve the lower bounds provided by the corresponding linear programming relaxation.

The second part of this chapter is to present the models for the Vehicle Routing Problem (VRP) variant with vehicle capacities. Again we will consider a model with aggregated load flow variables and another with disaggregated load flow variables, as well as distinguishing from upward only arcs and upward and downward arcs. To complete this variant we will also add valid inequalities in two different ways to evaluate how the models behave.

To finish off this chapter we will present the models for the Electric Vehicle Routing Problem (EVRP) with recharging stations.

3.1 EVRP with one vehicle - TSP variant

To model this situation we will consider three sets of variables. Let x_{ij} be a binary variable that is 1 when arc (i, j) is in the route and 0 otherwise, $\forall (i, j) \in A$. Consider also y_{ij} a non-negative variable that indicates the total load with which the vehicle crosses arc $(i, j) \in A$. Finally, let e_{ij} be a non-negative variable that represents the total energy level of the vehicle.
when leaving node i and heading towards node j, $\forall (i, j) \in A$.

3.1.1 Aggregated base model with only upward arcs

\[
\text{Minimize } \sum_{(i,j) \in A} c_{ij} x_{ij}
\]

s.t. :
1. $\sum_{i \in V} x_{ij} = 1$ \quad $\forall j \in V$ (1)
2. $\sum_{i \in V} x_{ji} = 1$ \quad $\forall j \in V$ (2)
3. $\sum_{i \in V} y_{ij} = -q_j + \sum_{i \in V} y_{ji}$ \quad $\forall j \in V_c$ (3)
4. $q_i x_{ij} \leq y_{ij} \leq (Q - q_j) x_{ij}$ \quad $\forall (i, j) \in A$ (4)
5. $\sum_{i \in V} e_{1i} = B$ (5)
6. $\sum_{i \in V} e_{1i} \geq \sum_{i \in V} \alpha_{i1} x_{i1} + \beta_{i1} y_{i1}$ (6)
7. $\sum_{i \in V} e_{ji} = \sum_{i \in V} e_{ij} - (\alpha_{ij} x_{ij} + \beta_{ij} y_{ij})$ \quad $\forall j \in V_c$ (7)
8. $e_{ij} \leq B x_{ij}$ \quad $\forall (i, j) \in A$ (8)
9. $x_{ij} \in \{0, 1\}$ \quad $\forall (i, j) \in A$ (9)
10. $y_{ij} \geq 0$ \quad $\forall (i, j) \in A$ (10)
11. $e_{ij} \geq 0$ \quad $\forall (i, j) \in A$ (11)

We aim to minimize the objective function which is the weighted sum of the x variables, associated to the arcs in the optimal solution, with weights equal to their respective cost, therefore we wish to minimize the total cost of the route.

Constraints (1) - (4) + (9) - (10) model the TSP part of the problem. Constraints (1) and (2) guarantee that there is exactly one arc leaving and one arc entering every client and the depot, respectively. Inequalities (4) relate the load flow variables with the arc selection variables stating that the load flow in an arc (i, j) which is selected is at most $Q - q_j$ - due to the fact that node j still has not been visited and so its demand is not part of the total load - and at least q_i - because we have just visited node i and collected...
its demand. Constraints (4) also state that if an arc is not selected to be used then the associated load flow variable must have the value 0. Constraints (3) are the load flow conservation constraints that together with (4) allow us to guarantee connectivity in our route. Lastly we have the domain constraints (9) and (10) that say that the x variables are binary and the y variables are non-negative.

Constraints (5) - (8) + (11) are specific to the energy flow part of the problem. We will explain these in more detail but first we need to explain how the energy flow variables are related to the x and y variables. Recall that the energy function on arc (i, j) used is given by $E_{ij}(l) = \alpha_{ij} + l \times \beta_{ij}$ where l is the load of the vehicle. The x variables represent the arcs selected and the y variables the load flow thus the total energy spent when traversing arc (i, j) can be represented as $\alpha_{ij}x_{ij} + \beta_{ij}y_{ij}$. In fact, if arc (i, j) is not used then this expression equals zero - due to constraints (4) - whereas if arc (i, j) is used the expression equals the energy function defined, that is, $\alpha_{ij} + \beta_{ij}y_{ij}$ with $y_{ij} = l$.

Constraints (8) allow us to relate the x and e variables. These state that the energy level when leaving any node must never be greater than B.

Constraint (5) states that the sum of the energy flow leaving the depot must be exactly B. If we look at constraints (2) in respect to the depot we guarantee that only one arc leaves the depot. Combining this information with constraints (8) for the arcs leaving the depot we guarantee that at most one energy variable will be positive. Thus constraint (5) can be interpreted as stating that exactly one energy flow variable will be positive and with value equal to B, that is, the vehicle has to leave the depot with B energy.

Constraint (6) assures that the energy flow of the vehicle when heading back to the depot has to be enough to traverse the last arc. In fact, because we only have one arc leaving each node and because of constraints (4) and (8), we know that on the left-hand side there will be only one variable which is positive and on the right-hand side only the corresponding x and y variables will be positive. In this way we are effectively saying that the energy flow on the arc which is chosen must be at least equal to the energy consumption on that arc.

Constraints (7) are the flow conservation constraints regarding the energy flow. They guarantee that the energy with which we leave a node is equal to the energy with which we arrived at that node minus the energy
spent on the arc leading there. Since we are considering all α and β to be non-negative we know that the energy will always be decreasing. If we allowed these values to be negative the energy could increase leading to potentially reaching energy levels higher than B which is not feasible. Further on we will explain how to deal with this situation.

Finally, the domain constraints (11) for the energy flow variables which state that the energy flow must always be non-negative.

Note that the set of constraints $e_{ij} \geq \alpha_{ij} x_{ij} + \beta_{ij} y_{ij}, \forall (i, j) \in A$ is always valid for the energy flow system and could be used instead of constraints (6), although we noticed that in the TSP variant the linear programming relaxation was either not improved or barely improved. Adding these valid inequalities always lead to worse solution times and so we decided not to use them.

We conclude this subsection by making some observations about the model. First we can see that the model is compact. This is due to the fact that the energy flow as we defined it depends on the load flow and so the load flow variables, which are one of the ways we have to build compact formulations for the TSP, need to be present in the model.

Another observation we can use in our benefit, since the formulation includes the “usual" TSP formulation, is to use any valid inequalities known for the TSP. In fact we wish to see if adding cuts originally studied for the TSP can indeed help the EVRP formulation.

A final observation that has been mentioned before but that is clear in this model is that it is possible to solve the regular TSP problem with this model by setting B to a large enough value. Even though this was not tried, we believe it to be possible to determine the value of B given the data such that every TSP solution is energy-feasible.

3.1.2 Aggregated base model with upward and downward arcs

Apparently it seems odd that we would need a separate model for this case but we do. It is very similar to the previous model although a slight change needs to be made. To better understand this difference focus on figure 3.1.

Let us assume that our maximum energy tank level is $B = 10$. According to the figure we leave node i heading towards j with an energy flow level of 8. Since $\beta_{ij} = 0$ the current load is not important but because $\alpha_{ij} = -5$
we know that we will be able to recuperate 5 units on our energy flow. According to our previous model this would mean that e_{jk} would be set to $13 > 10 = B$ which is energy-infeasible.

The situation shown in this figure leads us to conclude that constraints (7) are not correct in this case. In fact we can see that the correct solution would be to set $e_{jk} = 10$.

Look now at the example in figure 3.2. The only difference between figures 3.1 and 3.2 is that α_{ij} is now positive. This takes us back to the situation in the upward arc case and therefore we can say that $e_{jk} = 3$.

The same reasoning can of course be applied with any values of α and β because all that matters is the energy level upon leaving node i and the energy consumption on arc (i,j).

We can conclude from the examples that when we consider downward arcs in our model constraints (7) need to be replaced by:

$$\sum_{i \in V} e_{ji} = \min\{B, \sum_{i \in V} e_{ij} - (\alpha_{ij}x_{ij} + \beta_{ij}y_{ij})\} \quad \forall j \in V_c \quad (7^*)$$

Clearly this leads to a non-linear constraint. One linear way to model these constraints is to replace (7) with:

$$\sum_{i \in V} e_{ji} \leq \sum_{i \in V} e_{ij} - (\alpha_{ij}x_{ij} + \beta_{ij}y_{ij}) \quad \forall j \in V_c \quad (7^{**})$$

This is valid because $\sum_{i \in V} e_{ji} \leq B$ is already implied by (1) - (2) + (8). Even though this allows us to define the set of feasible solutions in a
Figure 3.3: The issue with the linear approach considered.

valid way, it raises a different problem. This linear approach is not the most accurate in terms of the energy flow in the sense that any feasible solution to our problem has an infinite number of different energy flow variable values that are feasible but we know that only one of those corresponds to the “real” solution. To better understand this let us look at another example in figure 3.3.

The values above the nodes are the demands and the pairs above the arcs are the α and β values on that arc, respectively. First we can determine the total energy consumption on this route. In total we will spend $3 + 1 \times 0$ on arc $(1, 2)$, we can potentially gain $2 (= 1 + 1 \times 1)$ on arc $(2, 3)$ and we will spend $2 + 1 \times 2 = 4$ on arc $(3, 1)$. Since the energy recuperation on arc $(2, 3)$ is lower than what is spent in the arc before we can safely say that we will have a net loss of $3 - 2 + 4 = 5$. This way, if the initial tank value is $B = 5$ we will end up with 0 energy in the end, if it is $B = 10$ we will end up with a surplus of 5, etc. Suppose then that we set $B = 10$. It is easy to see that we would then have $e_{12} = 10$, $e_{23} = 7$ and $e_{31} = 9$. According to the constraints (7**) this is valid because $e_{23} \leq e_{12} - 3 \times 1 - 1 \times 0$ and $e_{31} \leq e_{23} + 1 \times 1 + 1 \times 1$. The problem is that these values for the e variables are the ones we know are the correct values but constraints (7**) although valid also permit that we set $e_{23} = 5$ and $e_{31} = 4$. It is easy to see that this is still satisfied.

With this example we can then see that even though constraints (7**) are valid, they do not guarantee that the energy variables will have the correct values, that is, we have multiple optimal solutions that differ only in the energy variable values.

The problem now is to know how to achieve the correct values for the
energy. We provide three solutions for this question.

The first one is to simply ignore the situation because we know that the arc selection variables are feasible and so we can still obtain the final optimal route. If we do need to know the real values for the e variables then we can either add them to the objective function with a negative coefficient which will force them to take their maximum possible value which is exactly either B or the value given by \((7^{**})\) when we consider the equality, or we can do a post-optimization procedure in which we fix the x and y variables and then maximize the sum of the e variables with positive coefficients as if we were solving a bi-optimization problem with two targets with different priorities. The latter should be preferred because adding additional variables to the objective function of the original problem can harm the resolution of the problem even if the selected coefficients are small in absolute value.

Since the most important part of the optimal solution is the route itself, we will not explore any of the last two suggestions for now. We are not aware whether or not considering inequalities \((7^{**})\) influences in a negative way the resolution of the problem.

3.1.3 Disaggregated base model with only upward arcs

For the disaggregated version of the base model we need a new set of non-negative flow variables f_{ij}^k that represent the load flow in arc $(i, j) \in A$ coming from client $k \in V_c$. Note that if $j = k$ then $f_{ij}^k = 0$ because it is not possible to go to node j and bring a positive flow regarding the same node.

As with classical TSP models, these variables are a substitute for the y variables. In fact $y_{ij} = \sum_{k \in V_c} f_{ij}^k, \forall (i, j) \in A$. Our goal once again is seeing how these models behave in the electric version of the TSP.

The complete model is presented below.
\[\text{Minimize} \quad \sum_{(i,j) \in A} c_{ij}x_{ij} \]

\[\text{s.t. :} \quad (1) - (2) + (5) + (8) - (9) + (11) \]

\[\sum_{i \in V} f_{1i}^k = q_k \quad \forall k \in V_c \quad (12) \]

\[\sum_{i \in V} f_{ki}^k = q_k \quad \forall k \in V_c \quad (13) \]

\[\sum_{i \in V} f_{ij}^k - \sum_{i \in V} f_{ji}^k = 0 \quad \forall j, k \in V_c, j \neq k \quad (14) \]

\[f_{ij}^k \leq q_kx_{ij} \quad \forall (i, j) \in A, \forall k \in V_c \quad (15) \]

\[\sum_{i \in V} e_{1i} \geq \sum_{i \in V} \alpha_{1i}x_{1i} + \beta_{11} \sum_{k \in V_c} f_{1i}^k \quad (16) \]

\[\sum_{i \in V} e_{ji} = \sum_{i \in V} e_{ij} - \left(\alpha_{ij}x_{ij} + \beta_{ij} \sum_{k \in V_c} f_{ij}^k \right) \quad \forall j \in V_c \quad (17) \]

\[f_{ij}^k \geq 0 \quad \forall (i, j) \in A, \forall k \in V_c \quad (18) \]

Constraints (12) - (14) model the flow conservation with the new variables. Constraints (12) state that \(q_k \) units of demand must arrive at the depot coming from node \(k \). Since there is one equality per client, we guarantee that all the demand is picked up. Constraints (13) guarantee that the demand on a client node \(k \) must leave through one and only one arc. Finally constraints (14) say that the amount of flow incoming to an arc is the same that leaves that arc for all cases not covered by the previous (12) or (13) constraints.

To relate the \(x \) and \(f \) variables we could simply replace the \(y \) variables in the aggregated model by their definition in terms of the \(f \) variables. This though would not provide any benefit to using this model. Constraints (15) are the real benefit from using the disaggregated flow variables since they strengthen the model and improve the linear programming relaxation at the cost of an extra index in the load flow variables. This is well known and so
we will refrain from explaining why this improves the linear programming relaxation. Constraints (15) merely state that the flow related to client k that crosses an arc (i, j) never exceeds q_k if that arc is used. If arc (i, j) is not used then no flow can traverse that arc regardless of its origin.

Contrasting with constraints (15), that are a disaggregated version of (4), we have (16) and (17) which are the equivalent of (6) and (7) respectively. In this case we can not separate these constraints by client as we did with (15) and so we know that they will not provide any improvement in the linear programming relaxation value since we merely replaced the y variables for their definition in terms of the f variables. The fact that the energy consumption depends on both the arc (i, j) and the total flow on that same arc make it impossible to separate by client.

Finally, constraints (18) are the domain of the f variables which have to be non-negative.

Note that the disaggregated version of the model is expected to “suffer” from the same problem as in the classical TSP case. The lower bounds in a branch-and-bound method are in fact improved but the time taken to solve the linear programming relaxations may not compensate. This is expected to be aggravated because of the fact that we could not disaggregate constraints (16) and (17). This has been the problem with these models but nevertheless we wish to see how they compare to the aggregated version when energy is involved.

3.1.4 Disaggregated base model with upward and downward arcs

The explanations provided previously are still valid in this case. This way to consider downward arcs in the disaggregated version we need to replace (17) by:

$$\sum_{i \in V} e_{ji} \leq \sum_{i \in V} e_{ij} - \left(\alpha_{ij} x_{ij} + \beta_{ij} \sum_{k \in V_c} f_{ijk} \right) \quad \forall j \in V_c \quad (17*)$$
3.1.5 Aggregated base model with Connectivity Cuts

It is known that the natural formulation for the TSP involves only the arc selection variables, that is, the x variables. To model the connectivity of the route determined we do not need the flow variables although they are used in formulations that we wish to be compact since the natural formulation is not compact. The connectivity can be modeled in two main ways with one of them considering the Connectivity Cuts (CCs):

$$\sum_{i \in S, j \in S} x_{ij} \geq 1 \quad \forall S \subseteq V_c \quad \text{(CCs)}$$

If in the TSP we consider only the x variables then the CCs (or a similar set of constraints) are needed in the model to describe the set of feasible solutions. If we decide to extend the TSP formulation with the y variables, and therefore the load flow system, then the CCs are no longer needed to describe the set of feasible solutions, but if added they improve the linear programming relaxation value. Of course since there are exponentially many CCs, the only way we can use them is if we insert them in the model via a cutting plane approach.

As noted before, constraints (1) - (4) + (9) - (10) model the TSP part of the problem, therefore the CCs are also valid inequalities for our problem. This then leads us to consider a different model combining (1) - (11) with CCs, or (1) - (6) + (7**) + (8) - (11) + CCs in the case of downward arcs.

A branch-and-cut method was developed to solve this model and will be explained in a subsequent chapter.

Note that it is also known that constraints (15), which were the differentiating part of the disaggregated models, imply the CCs when not considering the energy. This means that in the classical TSP using either the aggregated model with CCs or the disaggregated model should provide the exact same linear programming relaxation bound. We do not have a theoretical result that allows us to say whether or not this is also true in this case but experimentation lead us to some interesting conclusions which we will state and explore in a subsequent chapter.
3.2 EVRP with multiple capacitated vehicles - VRP variant

The previous models considered a single vehicle operating. While this is important to understand and study the EVRP, a more “real-life” situation is to consider multiple vehicles with a maximum load capacity that we suppose is \(C \). Clearly we assume that \(C < Q \) or else we could use only one vehicle.

The variables used in the models that we will present below are the same \(x, y \) and \(e \) variables in the case of disaggregated models. Although a small number of constraints are the same as in previous models, we will include them all just to simplify the reading.

3.2.1 Aggregated base model with only upward arcs

\[
\text{Minimize} \quad \sum_{(i,j) \in A} c_{ij}x_{ij}
\]

s.t.: \[
\sum_{i \in V} x_{ij} = 1 \quad \forall j \in V_c \quad (19)
\]
\[
\sum_{i \in V} x_{ji} = 1 \quad \forall j \in V_c \quad (20)
\]
\[
\sum_{i \in V} y_{ij} = -q_j + \sum_{i \in V} y_{ji} \quad \forall j \in V_c \quad (3)
\]
\[
q_i x_{ij} \leq y_{ij} \leq C x_{ij} \quad \forall (i, j) \in A \quad (21)
\]
\[
e_{1i} = Bx_{1i} \quad \forall i \in V_c \quad (22)
\]
\[
e_{ij} \geq \alpha_{ij}x_{ij} + \beta_{ij}y_{ij} \quad \forall (i, j) \in A \quad (23)
\]
\[
\sum_{i \in V} e_{ji} = \sum_{i \in V} e_{ij} - (\alpha_{ij}x_{ij} + \beta_{ij}y_{ij}) \quad \forall j \in V_c \quad (7)
\]
\[
e_{ij} \leq Bx_{ij} \quad \forall (i, j) \in \{(i, j) \in A : i \neq 1\} \quad (24)
\]
\[
x_{ij} \in \{0, 1\} \quad \forall (i, j) \in A \quad (9)
\]
\[
y_{ij} \geq 0 \quad \forall (i, j) \in A \quad (10)
\]
\[
e_{ij} \geq 0 \quad \forall (i, j) \in A \quad (11)
\]

This model is very similar to the case with a single vehicle. Constraints
(19) and (20) guarantee that one and only one vehicle will enter and exit every client, respectively. Note that for the depot we no longer need to guarantee this because we will use multiple vehicles and therefore have multiple routes starting and ending at the depot.

Constraints (21) state that the total load on an arc \((i, j)\) which is selected to be used can never exceed the vehicle capacity. The flow conservation constraints (3) are unchanged.

Constraints (22) are equivalent to (5). What we aim to model is the fact that if an arc outgoing the depot is used, then the vehicle that uses it needs to start with a full tank. Because of the variable system for \(x\) and \(y\), which models a classical VRP problem, we are guaranteed to have disjoint routes for different vehicles (except of course in the depot). This way, the energy values will be “disjoint” as well, that is, every vehicle will need to start with a full tank and stay energy-feasible throughout its route. Constraints (23) also come in to guarantee this. They state that a vehicle needs to have sufficient energy at node \(i\) to traverse arc \((i, j)\) if it is selected to be used. In this variant we could consider (23) only for arcs ingoing to the depot node and still have a valid formulation but, contrasting with what was discussed in the TSP variant, we noticed that the lower bounds were increased in the multiple-vehicle version if they were added for all arcs.

Next we have constraints (7) which are unchanged and constraints (24) that only differ from (8) in the fact that we exclude arcs outgoing the depot since they are already included in (22).

Finally the domain constraints (9) - (11) are also unchanged and need no further explanation.

3.2.2 Aggregated base model with upward and downward arcs

The same explanations from section 3.1.2 related to the single-vehicle case are valid here. This model is then obtained from the previous one by replacing (7) with (7**).
3.2.3 Disaggregated base model with only upward arcs

\textbf{Minimize} \ \sum_{(i,j) \in A} c_{ij} x_{ij}

\text{s.t.} : (9) + (11) + (19) - (20) + (22) + (24)

\begin{align*}
\sum_{i \in V} f_{ki}^k &= q_k \quad \forall k \in V_c \quad (12) \\
\sum_{i \in V} f_{ki}^k &= q_k \quad \forall k \in V_c \quad (13) \\
\sum_{i \in V} f_{ij}^k - \sum_{i \in V} f_{ji}^k &= 0 \quad \forall j, k \in V_c, j \neq k \quad (14) \\
f_{ij}^k &\leq q_k x_{ij} \quad \forall (i,j) \in A, \forall k \in V_c \quad (15) \\
\sum_{k \in V_c} f_{ij}^k &\leq C x_{ij} \quad \forall (i,j) \in A \quad (25) \\
e_{ij} &\geq \alpha_{ij} x_{ij} + \beta_{ij} \sum_{k \in V_c} f_{ij}^k \quad \forall (i,j) \in A \quad (26) \\
\sum_{i \in V} e_{ji} &= \sum_{i \in V} e_{ij} - \left(\alpha_{ij} x_{ij} + \beta_{ij} \sum_{k \in V_c} f_{ij}^k \right) \quad \forall j \in V_c \quad (17) \\
f_{ij}^k &\geq 0 \quad \forall (i,j) \in A, \forall k \in V_c \quad (18)
\end{align*}

For the disaggregated version we need to add constraints (25) to ensure that the vehicle capacities are satisfied. Besides these, the only difference to the previous model is in constraints (26) that are equivalent to (23) but with the \(y \) variables replaced by their definition in terms of the \(f \) variables.

Constraints (12) - (15) + (17) are rewritten here again because we need to ensure load flow conservation and energy flow conservation with the \(f \) variables, while constraints (18) guarantee that the \(f \) variables are non-negative.

As with the single-vehicle case, constraints (15) are the reason why the disaggregated models are worth considering. In the VRP version, however, they are weaker specially with small values of \(C \). This situation has also
been studied and known for a while and it will not be explained here. It is then expected that these models produce worse results than when used in the single vehicle case. It is not expected that they will be used to solve the EVRP but it is nonetheless interesting from a theoretical point of view to see how they behave when compared to the other models.

3.2.4 Disaggregated base model with upward and downward arcs

For this model it is clear to see now that all we need to do is replace (17) in the previous model with (17*).

3.2.5 Aggregated base model with Connectivity Cuts

The CCs previously discussed are valid inequalities for the multiple-vehicle case as well. In fact, the natural formulation for the classical VRP uses only the x variables, and all the constraints that only include them, with the CCs being one of the possibilities to model the connectivity of the routes.

We will also provide results on both aggregated models for multiple vehicles when used in a branch-and-cut approach with the CCs.

3.2.6 Aggregated base model with Rounded Capacity Cuts

The final model that we will consider for the VRP variant of the EVRP involves Rounded Capacity Cuts (RCCs). These inequalities are of the form:

$$\sum_{i \in S', j \in S} x_{ij} \geq \left\lceil \frac{q(S)}{C} \right\rceil \quad \forall S \subseteq V_c \quad \text{(RCCs)}$$

The notation $q(S)$ represents the total demand of the nodes in S, that is, $q(S) = \sum_{i \in S} q_i$.

The RCCs guarantee the vehicle capacities because they force a minimum number of vehicles to go from the complementary set of S to S. This means that we can use these RCCs in two different ways. One way is to replace constraints (21) with (4) and use the RCCs to ensure the vehicle capacities. In this situation, constraints (3) and (4) guarantee a valid load flow system which is required for the energy flow system. The second way we can use the
RCCs is adding them as valid inequalities to improve the lower bounds of the linear programming relaxations solved during a branch-and-cut method.

We developed a branch-and-cut method that uses both these ways, which will be explained further in a subsequent chapter.

3.3 EVRP with recharging stations

The models soon to be presented are defined in the extended graph G'' whose construction was explained in the previous chapter. The variables used are the same from the previous sections. Note that G'' is no longer complete so $x_{ij} = y_{ij} = e_{ij} = 0$ for the arcs that do not exist in G''. To simplify the notation in the models below, we will not explicitly demand this in the model or account for it the summations, although care must be taken when implementing the models to either set the variables that do not exist to 0 or to not create them at all. Also as a matter of simplification consider that $q_i = 0$ for every node i that represents a copy of a recharging station.

Also note that we will not present the disaggregated versions because we believe they can be easily derived from the previous sections. In addition to that, the extended graph G'' has more arcs now, which means more variables, that will reduce the effectiveness of the disaggregated models.

3.3.1 Aggregated base model (one vehicle)

This first model assumes that there are only upward arcs and one vehicle (TSP variant).
Minimize \(\sum_{(i,j) \in A} c_{ij} x_{ij} \)

s.t.:
\[
\sum_{i \in V'} x_{ij} = 1 \quad \forall j \in V \setminus V' \tag{27}
\]
\[
\sum_{i \in V'} x_{ji} = 1 \quad \forall j \in V \setminus V' \tag{28}
\]
\[
\sum_{i \in V'} x_{ji} \leq 1 \quad \forall j \in V' \tag{29}
\]
\[
\sum_{i \in V'} x_{ij} = \sum_{i \in V} x_{ji} \quad \forall j \in V' \tag{30}
\]
\[
\sum_{i \in V'} y_{ij} = -q_j + \sum_{i \in V} y_{ji} \quad \forall j \in V'' \setminus \{1\} \tag{31}
\]
\[
q_i x_{ij} \leq y_{ij} \leq (Q - q_j) x_{ij} \quad \forall (i,j) \in A'' \tag{32}
\]
\[
\sum_{i \in V''} e_{ii} = B \tag{33}
\]
\[
\sum_{i \in V''} e_{ji} = B \sum_{i \in V} x_{ji} \quad \forall j \in V' \tag{34}
\]
\[
\sum_{i \in V''} e_{ii} \geq \sum_{i \in V''} \alpha_{ii} x_{ii} + \beta_{ii} y_{ii} \quad \forall j \in V' \tag{35}
\]
\[
\sum_{i \in V''} e_{ij} \geq \sum_{i \in V''} \alpha_{ij} x_{ij} + \beta_{ij} y_{ij} \quad \forall j \in V' \tag{36}
\]
\[
\sum_{i \in V''} e_{ji} = \sum_{i \in V''} e_{ij} - (\alpha_{ij} x_{ij} + \beta_{ij} y_{ij}) \quad \forall j \in V_c \tag{37}
\]
\[
e_{ij} \leq B x_{ij} \quad \forall (i,j) \in A'' \tag{38}
\]
\[
x_{ij} \in \{0, 1\} \quad \forall (i,j) \in A'' \tag{39}
\]
\[
y_{ij} \geq 0 \quad \forall (i,j) \in A'' \tag{40}
\]
\[
e_{ij} \geq 0 \quad \forall (i,j) \in A'' \tag{41}
\]

If the graph has upward and downward arcs then, as usual, constraints (37) need to be replaced with (37*). Every explanation from previous sections is valid in this case.
\[
\sum_{i \in V''} e_{ji} \leq \sum_{i \in V''} e_{ij} - (\alpha_{ij}x_{ij} + \beta_{ij}y_{ij}) \quad \forall j \in V_c \quad (37*)
\]

Most of the constraints are similar to ones found in the models without recharging stations. They differ only in the fact that they are now defined in an extended graph. Those constraints are (27) - (28) + (31) - (33) + (35) + (37) - (41). Their counterparts are, respectively, (1) - (11). As a quick review, constraints (27) - (28) guarantee that every client is visited exactly one; constraints (31) - (32) model the load flow conservation; constraint (33) assures that the vehicle leaves the depot with a full tank; constraint (35) makes sure the vehicle has enough energy to return to the depot in the end of the route; constraints (37) model the energy flow conservation in the client nodes; constraints (38) assure the maximum energy level is not exceeded; and constraints (39) - (41) guarantee the variable domains. Note that in this case we could also use the set of valid inequalities given by \(e_{ij} \geq \alpha_{ij}x_{ij} + \beta_{ij}y_{ij}, \forall (i,j) \in A \) instead of constraints (35) - (36).

The new sets of constraints start with (29) which assure that a copy of a recharging station is visited at most once, while (30) state that the number of arcs leaving a copy of a recharge station is the same as the number of arcs entering that copy (in this case, it is either 0 or 1). Constraints (34) are similar to (33) in the sense that they guarantee that a vehicle leaves the copy of a recharging station with a full tank in case that copy is visited. Constraints (36) guarantee that the vehicle has enough energy to reach a copy of a recharging station if headed there, similarly to what (35) does for the depot. Note that constraints (34) and (36) are, in a sense, the energy flow conservation constraints for the recharging station related nodes since in conjunction they model the energy flow entering and leaving every copy of a recharging station.

3.3.2 Aggregated base model (multiple capacitated vehicles)

The following model assumes that we are allowed to use more than one vehicle as in the VRP variants presented previously and that only upward arcs exist.
Minimize $\sum_{(i,j) \in A} c_{ij} x_{ij}$

s.t. (29) - (31) + (37) + (39) - (41)

$\sum_{i \in V''} x_{ij} = 1 \quad \forall j \in V_c$ (42)

$\sum_{i \in V''} x_{ji} = 1 \quad \forall j \in V_c$ (43)

$q_i x_{ij} \leq y_{ij} \leq C x_{ij} \quad \forall (i, j) \in A''$ (44)

$e_{ij} = B x_{ij} \quad \forall (i, j) \in \{(i, j) \in A'' : i \notin V_c\}$ (45)

$e_{ij} \geq \alpha_{ij} x_{ij} + \beta_{ij} y_{ij} \quad \forall (i, j) \in A''$ (46)

$e_{ij} \leq B x_{ij} \quad \forall (i, j) \in \{(i, j) \in A'' : i \in V_c\}$ (47)

Once again, if we wish to incorporate both upward and downward arcs, we need to replace (37) with (37*).

Constraints (42) - (44) + (46) are very similar to, respectively, (19) - (21) + (23). They are only different since the newer ones refer to the extended graph G''. Constraints (42) - (43) assure that every client is visited exactly once (although excluding the depot, which (27) - (28) did not, since we can now have multiple vehicles); constraints (44) guarantee that the load flow is within bounds, specially that it does not exceed the maximum load capacity; and constraints (46) guarantee that the energy level is always sufficient to traverse an arc in case it is part of the route.

The last two sets of constraints (45) and (47), similarly to (22) and (24), assure that a vehicle leaves the depot or any copy of a recharging station with a full tank and that, in the other arcs, the total energy flow does not exceed the maximum tank level, respectively.
Chapter 4

Branch-and-cut methods

In this chapter we will present the branch-and-cut methods that have been implemented. We will first give an overview on branch-and-cut methods in general followed by the specifics of the software used to implement our own. If one wishes to see a more detailed review on branch-and-cut methods and valid inequalities in general then they are referenced to chapters 7, 8 and 9 of [9].

In a third section we will go more into detail on what the program developed can do and how a regular user can use it to test their own instances. Note that details related to the specific programming language will not be explained. Every algorithm used will rather be explained in pseudo-code. Nonetheless the code is available on demand.

Finally, the last section of this chapter will explain the instance format supported by the developed programs.

4.1 Overview on branch-and-cut methods

The main focus of this thesis is to study the models described in the previous chapter. While we could simply give them to a solver and wait for results, which we have also done, we can go even further.

A branch-and-cut method is a branch-and-bound method where in some or all nodes of the branch-and-bound tree we add global or local valid inequalities to try and improve the linear programming relaxation values with the aim of reducing the total number of nodes explored in the tree. This however comes with a price. First it is important that the inequalities added
are in fact violated by the fractional solution in the current node or else no improvement can be made. Second we need to actually find such inequalities which is usually time-consuming and will force us to spend more time at every node. This is the trade-off of these methods: adding inequalities can improve the bounds and lower the number of nodes visited in the branch-and-bound tree but it takes time to find them. If the inequalities are not strong enough then we could actually be doing more harm than good.

Given a fractional solution and a set of valid inequalities, the separation problem for that set of valid inequalities is the problem of determining whether or not the fractional solution satisfies all inequalities in the set and, if not, then find at least one inequality which is violated.

A separation problem can usually be transformed into an optimization problem. If we solve this optimization problem we are guaranteed to find at least one inequality which is violated or prove that none are. Being an optimization problem it could happen that it falls into the NP-hard class hence why sometimes a separation problem needs to be solved heuristically (or else we would be solving an NP-hard problem in every node of the branch-and-bound tree!). This however is not mandatory. Some methods in the literature solve their separation problems in the NP-hard class to optimality. The advantage is that the valid inequalities provided in the end are extremely beneficial and it pays off to separate them.

On the other hand, a separation problem can be polynomially solvable as will the ones we consider in this thesis, although this does not mean that the inequalities provided are always helpful. Experimentation is needed from a practical point of view.

We considered valid inequalities being added as a means of improving the linear programming relaxation bounds but this is not the only way we can define a branch-and-cut method. An optimization problem can have certain inequalities which are mandatory in the sense that every integer solution needs to satisfy them so that optimality is proven. It could happen that these inequalities are exponentially many and so adding them directly into the model could turn out catastrophic since we could not even be able to solve the linear programming relaxation (for example if we try to use the Simplex method with 2^{50} equalities!).

The workaround for this issue is to consider the original model without this set of exponentially many constraints and, every time a new integer
solution is found in the branch-and-bound tree, solve the separation problem to determine one inequality that is violated by the integer solution and add it. If no violated inequalities are found then we accept the integer solution and proceed with branching. In the end of the process we will guarantee optimality if and only if we solve the separation problem to optimality so, in the case where the separation problem lies in the NP-hard class, we could be looking at long computational times.

Note that using a branch-and-cut method will not need us to explicitly add every inequality in the set or sets. We will end the branch-and-bound tree with only a small subset of inequalities added, as all others will be implicitly satisfied. This even favors more the decision of using a cutting plane approach instead of bluntly adding every inequality a priori.

Several variants of branch-and-cut methods exist. Something that is quite usual is joining these two types of cuts in a single branch-and-cut method. For example having one set of exponentially many constraints which are to be added every time we find a new integer solution and a different (or even the same) set of inequalities to be added as cuts for the fractional solutions. We can also have more than one set of inequalities with different separation problems and try different approaches such as solving all separation problems in every node or just at the root node and then only look for one type of inequalities in the rest of the tree, etc.

The theoretical work of discovering sets of inequalities and devising separation algorithms is the hardest part of a branch-and-cut method. Implementing the branch-and-cut method has become easier thanks to the available solvers and their frameworks which allow us to easily tell the solver to use a separation algorithm we implemented. For this thesis we used CPLEX 12.6.1 and its Concert Technology for C++.

4.2 CPLEX’s Concert Technology for C++

CPLEX is one of the several solvers that is available. It features an interface to build and solve from linear programming to mixed integer programming to non-linear programming models.

CPLEX also offers its users the Concert Technology which exists for several programming languages of which we chose C++. We can use it to build and solve simple models, get access to the solutions found, register
computational times and so on, although this can also be achieved with the regular CPLEX interface. The most important aspect for this thesis of the Concert Technology is the ability of adding our own algorithms to the regular branch-and-bound method that CPLEX has implemented.

We aimed to implement some separation algorithms to add our own valid inequalities (CPLEX also has its own procedures to add cuts) during the branch-and-bound process. The way this works is CPLEX makes the distinction between what are called User Cuts and Lazy Cuts. A User Cut is a procedure that is to be called by CPLEX every time a new fractional solution is determined, meaning that we should implement User Cuts that look for and add inequalities which are violated by fractional solutions, whereas a Lazy Cut is a procedure that is called by CPLEX only on every integer solution found, and so should contain a separation algorithm for inequalities violated by integer solutions.

To use these features we need to create one or several classes with whatever names we wish that are extensions to either the class that deals with User Cuts or Lazy Cuts. To make this very easy for the user, all that CPLEX requires is our classes to have a method called main() which, as can be seen, takes no arguments. What happens in that method is then up to us.

We will skip any implementation details as the code is accessible to anyone who wishes to see it. Only the separation algorithms used will be presented in pseudo-code.

4.3 Specifics of the implementation

4.3.1 How to use

Fundamentally, the code created allows the user to run any of the models from sections 3.1 and 3.2. The models from section 3.3, i.e., with recharging stations, were not implemented yet but can and will be easily added in the future. The format of the instance files plus the way they need to be written can not be changed since the program only reads the file properly if they use the format it was built for.

In order to use the program the user needs to first decide on a single-vehicle model or multiple-vehicle model since the input arguments are slightly different. If the user wishes to run an instance with a single-vehicle model then, in order, he or she needs to specify:
1. The .txt file containing the instance data with the only requirement of the format being that it ends in “_[number of nodes].txt”. For example, “[random text]_20.txt” is a valid format that indicates the instance has 20 nodes. What is placed in “[random text]” is irrelevant although we chose for our instances to use “pos_graph” in case all α and β values are non-negative or simply “graph” if they can be negative or positive;

2. The model to use. In the single-vehicle case the user can choose from “abmu”, “abmud”, “dbmu” or “dbmud” which correspond to models 3.1.1, 3.1.2, 3.1.3 and 3.1.4, respectively;

3. The maximum tank value to use, that is, the value of B;

4. If the user wants the final variable output or not by writing either “yes” or “no”;

5. If the user wishes that CPLEX uses its own integrated cuts or not by writing either “yes” or “no”;

6. If the user wishes to use the Connectivity Cuts or not by writing “yes” or “no” (corresponding to section 3.1.5).

In case the user wishes to use a multiple-vehicle model then the input, in order, is:

1. The .txt file containing the instance data with the only requirement of the format being that it ends in “_[number of nodes].txt”. For example, “[random text]_20.txt” is a valid format that indicates the instance has 20 nodes. What is placed in “[random text]” is irrelevant although we chose for our instances to use “pos_graph” in case all α and β values are non-negative or simply “graph” if they can be negative or positive;

2. The model to use. In the multiple-vehicle case the user can choose from “abmu_vrp”, “abmud_vrp”, “dbmu_vrp” or “dbmud_vrp” which correspond to models 3.2.1, 3.2.2, 3.2.3 and 3.2.4, respectively;

3. The maximum tank value to use, that is, the value of B;

4. The maximum vehicle capacity C;

5. If the user wants the final variable output or not by writing either “yes” or “no”;
6. If the user wishes that CPLEX uses its own integrated cuts or not by writing either “yes” or “no”;

7. If the user wishes to use Connectivity Cuts (section 3.2.5), Rounded Capacity Cuts (section 3.2.6) or no cuts, by writing either “yes.weak”, “yes.str” or “no”, respectively.

All the integration with CPLEX is done automatically by the program therefore, after being started, the user only needs to wait for the program to end. The output includes the CPLEX status, that is, whether the final solution is optimal or the problem is infeasible, the number of branch-and-bound nodes, the linear programming relaxation value, the root node value, (which can be different from the linear programming relaxation value due to preprocessing), the final objective function value and the total CPU time. In addition to this, all the regular CPLEX output is also shown such as the number of cuts of a given type added, including the total number of cuts obtained through user defined User or Lazy cuts. If the user so wishes the variables can also be output by selecting the corresponding option before running the program, as explained before.

4.3.2 Instance format

In the previous section we mentioned the instance file name which must be of the form “[random text]_20.txt”. The contents of this file must be the demand vector \(D\), the cost matrix \(C\), the \(\alpha\) value matrix \(A\) and the \(\beta\) value matrix \(B\), in this order. To easily explain the correct formatting, look at figure 4.1

Note that the demand vector includes the depot, which must have demand 0, and that all matrices are complete with 0 in the main diagonal. Something which may not be obvious is that each number must be separated by a blank space. Any other separator will not work and will probably lead to a program error.

The example shown in figure 4.1 depicts an instance with 5 nodes - 1 depot and 4 clients. The depot has demand 0, as it should, and the clients represented by nodes 2, 3, 4 and 5 have demand 3, 2, 2 and 5, respectively. The cost of going from the client in node 3 to the client in node 5 is 189, whereas going from the depot to the client in node 2 will cost 333, and the
energy consumed by an empty vehicle that traverses arc (4, 1) is 16 with an extra consumption of 1 per load unit, for example.

4.3.3 Branch-and-cut method with the separation of Connectivity Cuts

As said previously, to develop a branch-and-cut method using CPLEX’s Concert Technology we need to implement our own procedures in a class and make it so that class extends either the User Cut class or the Lazy Cut class. In this specific case, the Connectivity Cuts (CCs) are always defined as User Cuts. Recalling chapter 3, the Electric Vehicle Routing Problem’s (EVRP) formulation involves not only the x variables but also the y and e hence why we could conclude that the CCs were valid inequalities and not mandatory constraints for our model.

Algorithm 4.1 describes how to separate the CCs given a fractional solution of x, which we will call x^*. Note that, when determining the minimal cut between the depot and the current client in the cycle, it is common to find a minimal cut, and therefore
Algorithm 4.1 Separation of Connectivity Cuts.

Create an auxiliary graph which has the same nodes and arcs as the original graph. For every arc in the auxiliary graph, add a maximum capacity of x^*_{ij} and a minimum capacity of 0.

for all $i \in V \setminus \{1\}$ do
 Determine the maximum flow v between the depot and client i.
 if $v < 1$ then
 Determine a minimal cut between the depot and client i. Let S' be the set of nodes which are on the depot’s side in the minimal cut and $S = V \setminus S'$.
 Add the violated Connectivity Cut $\sum_{i \in S', j \in S} x_{ij} \geq 1$, unless it is already present in the model.
 end if
end for

a violated inequality, which has already been found in previous iterations of the cycle or even while solving previous separations. CPLEX has procedures implemented that automatically deal with this fact and do not add cuts which have already been added. This way we can ignore checking for this situation in the algorithm and add every cut that is found.

The branch-and-cut method developed in this case consists of adding algorithm L1 to the list of routines which are called upon every fractional solution. The maximum flow algorithm used was not implemented in this thesis but the code was provided to us. It is the algorithm proposed by Goldberg in [10] which runs in $O(t^3)$, where t is the number of nodes in the graph.

4.3.4 Branch-and-cut method with the separation of Rounded Capacity Cuts

In the previous chapter we discussed the use of Rounded Capacity Cuts (RCCs) to solve the Vehicle Routing Problem (VRP) variant. RCCs can be used in two ways: we either remove the capacity constraints (21) and replace them with (4) - to ensure a correct load flow system and therefore a correct energy flow system - and then use the RCCs to guarantee that the vehicle capacities are always satisfied, or we add them as simple valid inequalities.
The branch-and-cut method developed actually uses both, that is, the RCCs are separated in both fractional and integer solutions.

Algorithm 4.2 is the separation algorithm for RCCs given a fractional or integer solution x^*.

Algorithm 4.2 Separation of Rounded Capacity Cuts.

Create an auxiliary graph which has the same nodes as the original graph plus a new dummy node labeled $n+1$. Add all original outgoing arcs from the depot, of the form $(1, j)$ with $j \in V_c$, with maximum capacity equal to $C \times x_{1j}^*$. Add all original arcs between clients with maximum capacity equal to $C \times x_{ij}^*$, where i and j are in the set V_c. For every client i add an arc $(i, n+1)$ with maximum capacity equal to q_i. All minimum capacities are set to 0.

Determine the maximum flow v between 1 and $n+1$.

\[
\text{if } v < Q \text{ then}
\]

Determine a minimal cut between the depot and node $n+1$. Let S' be the set of nodes which are on the depot’s side in the minimal cut and $S = V \setminus S'$ (note that node $n+1$ is not included in S).

Determine $q(S) = \sum_{i \in S} q_i$.

Add the violated Rounded Capacity Cut $\sum_{i \in S', j \in S} x_{ij} \geq \lceil \frac{q(S)}{C} \rceil$.

\text{end if}

It is clear that the RCC separation routine adds at most one cut unlike the previous one which added at most one cut per client. To speed up the branch-and-cut method we decided to incorporate the separation of CCs as well instead of only separating RCCs. Basically, if no RCCs are found then we look for CCs. This is only valid for fractional solutions, of course. For integer solutions we only separate RCCs. The final algorithm to be used by CPLEX in the case where the solution is fractional is then algorithm 4.3.

Algorithm 4.3 Cut routine for fractional solutions using RCC and CC separation.

Separate RCCs using 4.2

\[
\text{if No RCCs were found (which means } v \geq Q \text{ in 4.2) then}
\]

Separate CCs using 4.1

\text{end if}
As a final note we would like to add that there was another separation routine considered for RCCs which proved ineffective, as the results will show. It consists of separating CCs but adding the violated inequalities with the improved right-hand side. The pseudo-code for that routine, which we named “weak separation” is shown in algorithm 4.4. The reason why it was ineffective will be further explored in the following chapter. Note though that this algorithm should give at least the same results as algorithm 4.1.

Algorithm 4.4 Separation of Rounded Capacity Cuts (weak version).

Create an auxiliary graph which has the same nodes and arcs as the original graph. For every arc in the auxiliary graph, add a maximum capacity of x_{ij} and a minimum capacity of 0.

\begin{algorithm}
\begin{algorithm}
\textbf{for all} $i \in V \setminus \{1\}$ \textbf{do}
\begin{algorithm}
\textbf{Determine the maximum flow v between the depot and client i.}
\end{algorithm}
\begin{algorithm}
\textbf{if} $v < 1$ \textbf{then}
\begin{algorithm}
\textbf{Determine a minimal cut between the depot and client i. Let S' be the set of nodes which are on the depot’s side in the minimal cut and $S = V \setminus S'$.}
\end{algorithm}
\begin{algorithm}
\textbf{Determine} $q(S) = \sum_{i \in S} q_i$.
\end{algorithm}
\begin{algorithm}
\textbf{Add the violated Rounded Capacity Cut} $\sum_{i \in S', j \in S} x_{ij} \geq \lceil \frac{q(S)}{C} \rceil$.
\end{algorithm}
\end{algorithm}
\end{algorithm}
\end{algorithm}
end if
\end{algorithm}
\end{algorithm}
end for
Chapter 5

Test results

This chapter will focus on presenting and discussing some test results on the models and the branch-and-cut methods considered.

The first section will explain how the test instances were generated while the second and third sections will show the result tables, for the Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP) respectively, and our first insight on what we can conclude from them.

5.1 The test instances

Due to the nature of the problem in study and the exact method approach, and the time available for testing, we decided to use only two instances which share the demand vectors and cost matrices and differ only in the fact that one has strictly positive energy consumption values while the other has both positive and negative values. Despite this, we have other instances generated and ready to be used and the tools to generate more if needed and with varied input parameters.

The instances used satisfy the following conditions:

- 20 nodes;
- Complete graph;
- Integer demands in the set \{1,\ldots,5\};
- Integer symmetric and euclidian costs in the set \{20,\ldots,400\};
• Integer inverse-symmetric α values in the set $\{-4, \ldots, 20\}$ (inverse-symmetry means that if $\alpha_{ij} = -4$ then $\alpha_{ji} = 20$, for example) with the value of 1 added in the end to account for some sort of constant energy loss, therefore the final values lie in the set $\{-3, \ldots, 21\}$;

• Integer β values in the set $\{-1, 0, 1\}$ related with the sign of the corresponding α, i.e., if $\alpha_{ij} < 0$ then $\beta_{ij} = -1$ whereas if $\alpha_{ij} > 0$ then $\beta_{ij} = 1$. If $\alpha_{ij} = 0$ then $\beta_{ij} = 0$ as well;

• In case we wish to have only strictly positive energy consumption values, we add 4 to every α value, making them vary in the set $\{1, \ldots, 25\}$, and consider all β values to be 1.

5.2 TSP variant

Table 5.1 shows the results for the TSP variant. For the upward only arcs models we used three values of B: 800, 700 and 600. For the upward and downward arcs models we used the values 150, 100 and 50. They are based on the total energy spent in the TSP route which was determined via a regular TSP model. The optimal TSP route has a cost value of 1423.

The columns represent, from left to right, the model used, the linear programming relaxation value (LR), the optimal value (OPT), the linear gap, the time taken in seconds to optimality and the number of branch-and-bound (B&B) nodes in the final tree. In the models used section we use the legend CCs to refer to the Connectivity Cuts, separated using algorithm 4.1 and CPCs to refer to the CPLEX integrated cuts, which can not be controlled by us in any form except choosing to remove them and can lead to erratic behavior. Note that the linear programming relaxation values are calculated without any pre-processing done on the model by CPLEX although to solve to optimality pre-processing is allowed. Basically, the program developed calculates the linear programming relaxation of the model first with the pre-processing turned off and then restarts the branch-and-bound process with pre-processing turned on.

Finally, we should refer that ABMU, ABMUD, DBMU and DBMUD are the models in sections 3.1.1, 3.1.2, 3.1.3 and 3.1.4, respectively.
Table 5.1: Results for the TSP variant. The running times were obtained on a single 3.6 GHz thread.

<table>
<thead>
<tr>
<th>Model</th>
<th>LR</th>
<th>OPT</th>
<th>gap</th>
<th>Time (s)</th>
<th>B&B nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>B = 800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABMU</td>
<td>1371.18</td>
<td>1423</td>
<td>3.64%</td>
<td>10</td>
<td>6953</td>
</tr>
<tr>
<td>ABMU + CCs</td>
<td>1423</td>
<td>1423</td>
<td>0.00%</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>ABMU + CPCs</td>
<td>1423</td>
<td>1423</td>
<td>0.00%</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>ABMU + CCs + CPCs</td>
<td>1423</td>
<td>1423</td>
<td>0.00%</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>DBMU + CPCs</td>
<td>1423</td>
<td>1423</td>
<td>0.00%</td>
<td>0.6</td>
<td>0</td>
</tr>
<tr>
<td>B = 700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABMU</td>
<td>1371.18</td>
<td>1427</td>
<td>3.91%</td>
<td>10.1</td>
<td>4631</td>
</tr>
<tr>
<td>ABMU + CCs</td>
<td>1423</td>
<td>1427</td>
<td>0.28%</td>
<td>7.3</td>
<td>891</td>
</tr>
<tr>
<td>DBMU</td>
<td>1423.03</td>
<td>1427</td>
<td>0.28%</td>
<td>40.7</td>
<td>501</td>
</tr>
<tr>
<td>ABMU + CPCs</td>
<td>1422.08</td>
<td>1427</td>
<td>0.34%</td>
<td>0.9</td>
<td>278</td>
</tr>
<tr>
<td>ABMU + CCs + CPCs</td>
<td>1423</td>
<td>1427</td>
<td>0.28%</td>
<td>6.3</td>
<td>693</td>
</tr>
<tr>
<td>DBMU + CPCs</td>
<td>1423.03</td>
<td>1427</td>
<td>0.28%</td>
<td>4.9</td>
<td>24</td>
</tr>
<tr>
<td>B = 600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABMU</td>
<td>1371.18</td>
<td>1463</td>
<td>6.28%</td>
<td>147.4</td>
<td>68701</td>
</tr>
<tr>
<td>ABMU + CCs</td>
<td>1423</td>
<td>1463</td>
<td>2.73%</td>
<td>385.2</td>
<td>43712</td>
</tr>
<tr>
<td>DBMU</td>
<td>1423.1</td>
<td>1463</td>
<td>2.73%</td>
<td>684.9</td>
<td>8348</td>
</tr>
<tr>
<td>ABMU + CPCs</td>
<td>1421.7</td>
<td>1463</td>
<td>2.82%</td>
<td>356.3</td>
<td>210054</td>
</tr>
<tr>
<td>ABMU + CCs + CPCs</td>
<td>1423.03</td>
<td>1463</td>
<td>2.73%</td>
<td>59.4</td>
<td>8721</td>
</tr>
<tr>
<td>DBMU + CPCs</td>
<td>1423.11</td>
<td>1463</td>
<td>2.73%</td>
<td>633.9</td>
<td>5924</td>
</tr>
<tr>
<td>B = 150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABMUD</td>
<td>1371.51</td>
<td>1429</td>
<td>4.02%</td>
<td>5.6</td>
<td>2532</td>
</tr>
<tr>
<td>ABMUD + CCs</td>
<td>1423.01</td>
<td>1429</td>
<td>0.42%</td>
<td>4</td>
<td>448</td>
</tr>
<tr>
<td>DBMUD</td>
<td>1423.02</td>
<td>1429</td>
<td>0.42%</td>
<td>13.6</td>
<td>115</td>
</tr>
<tr>
<td>ABMUD + CPCs</td>
<td>1421.81</td>
<td>1429</td>
<td>0.50%</td>
<td>0.8</td>
<td>316</td>
</tr>
<tr>
<td>ABMUD + CCs + CPCs</td>
<td>1423.01</td>
<td>1429</td>
<td>0.42%</td>
<td>2.8</td>
<td>250</td>
</tr>
<tr>
<td>DBMUD + CPCs</td>
<td>1423.03</td>
<td>1429</td>
<td>0.42%</td>
<td>2.6</td>
<td>51</td>
</tr>
<tr>
<td>B = 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABMUD</td>
<td>1372.4</td>
<td>1431</td>
<td>4.10%</td>
<td>6.3</td>
<td>2032</td>
</tr>
<tr>
<td>ABMUD + CCs</td>
<td>1423.07</td>
<td>1431</td>
<td>0.55%</td>
<td>2.5</td>
<td>196</td>
</tr>
<tr>
<td>DBMUD</td>
<td>1423.1</td>
<td>1431</td>
<td>0.55%</td>
<td>3.4</td>
<td>17</td>
</tr>
<tr>
<td>ABMUD + CPCs</td>
<td>1422.04</td>
<td>1431</td>
<td>0.63%</td>
<td>0.8</td>
<td>143</td>
</tr>
<tr>
<td>ABMUD + CCs + CPCs</td>
<td>1423.12</td>
<td>1431</td>
<td>0.55%</td>
<td>3.7</td>
<td>293</td>
</tr>
<tr>
<td>DBMUD + CPCs</td>
<td>1423.14</td>
<td>1431</td>
<td>0.55%</td>
<td>3.4</td>
<td>18</td>
</tr>
<tr>
<td>B = 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABMUD</td>
<td>1375.89</td>
<td>1459</td>
<td>5.70%</td>
<td>10</td>
<td>2672</td>
</tr>
<tr>
<td>ABMUD + CCs</td>
<td>1423.78</td>
<td>1459</td>
<td>2.41%</td>
<td>22.4</td>
<td>2561</td>
</tr>
<tr>
<td>DBMUD</td>
<td>1425.15</td>
<td>1459</td>
<td>2.32%</td>
<td>215.3</td>
<td>1627</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Model</th>
<th>LR</th>
<th>OPT</th>
<th>gap</th>
<th>Time (s)</th>
<th>B&B nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABMUD + CPCs</td>
<td>1432.8</td>
<td>1459</td>
<td>1.80 %</td>
<td>6.3</td>
<td>713</td>
</tr>
<tr>
<td>ABMUD + CCs + CPCs</td>
<td>1432.72</td>
<td>1459</td>
<td>1.80 %</td>
<td>15.6</td>
<td>1639</td>
</tr>
<tr>
<td>DBMUD + CPCs</td>
<td>1430.44</td>
<td>1459</td>
<td>1.96 %</td>
<td>130.7</td>
<td>903</td>
</tr>
</tbody>
</table>

The first observation taken from the results on table 5.1 is that the value of B strongly influences the problem. It was expected that with lower values of B the optimal solution would change since more routes would become energy-infeasible. What is surprising is the fact that the gaps worsen when B decreases, which can be explained by the fact that the optimal value increases but the linear programming relaxation value barely does so. Obviously, when the gaps are bigger then the time to optimality is also increased as are the B&B nodes. Excluding some rare exceptions, this can be seen throughout the table.

The second conclusion we can draw from this table is that the aggregated base models with CCs have almost the same LR value as the disaggregated models. However they do not have the same value as it happens in the TSP which means that in the presence of the energy flow variables and the constraints that involve them, the disaggregated model and the aggregated model with CCs are no longer equivalent even though the disaggregated model still implies the CCs. This happens with both energy consumption value types and with or without CPCs.

Thirdly, CPLEX has a very good cutting plane routine for these types of flow-based models since it outperforms the models that do not use CPCs but it is clearly not enough to deal with the increasing gaps that were mentioned before. This leads us to conclude that, although CPLEX is good by its own, it will not be able to solve very large instances without “help”.

In terms of running times, not using the CCs is always the better option for these instances. This was something that was mentioned previously. The CCs are not good enough in terms of improving the bounds to be worth separating even though, when not considering CPCs, they always reduce the number of B&B nodes in the tree. Using only CPCs though is still a better option.

As for the disaggregated models, we can see that they are not worth it as we expected. They provide the smallest number of B&B nodes in their respective trees but the running times are always much worse.
Finally, there does not seem to be any significant differences when considering upward arcs only or upward and downward arcs in terms of the linear programming relaxation and conclusions although the upward and downward case seemed easier to solve.

5.3 VRP variant

The results for the VRP variant are shown in table 5.2. We used two different maximum vehicle capacity values - 30 and 10 - and for each we have three values of B for each energy consumption value types. For $C = 30$ we have $B \in \{150, 200, 250\}$ when considering only upward arcs and $B \in \{25, 50, 100\}$ when considering both types of arcs. For $C = 10$ we have $B \in \{45, 60, 75\}$ and $B \in \{30, 40, 50\}$, respectively for upward and upward and downward cases. The total demand of all clients for the instances used is $Q = 59$. The optimal VRP solution has a cost value of 1505 for $C = 30$ and 2092 for $C = 10$.

The columns have the same meaning as in table 5.1 as do the symbols CCs and CPCs. RCCs refers to Rounded Capacity Cuts using the final routine that includes Connectivity Cuts described in algorithm 4.3, while WRCCs refers also to the Rounded Capacity Cuts but using the weak separation algorithm 4.4. Note that this weak separation algorithm is at least as good as the CCs in terms of linear programming relaxation since in the worst case it adds a CC instead of a RCC.

Finally, we should add that ABMU, ABMUD, DBMU and DBMUD now represent the models with multiple vehicles in sections 3.2.1, 3.2.2, 3.2.3 and 3.2.4, respectively.

Table 5.2: Results for the VRP variant. The running times were obtained on a single 3.6 GHz thread.

<table>
<thead>
<tr>
<th>Model</th>
<th>LR</th>
<th>OPT</th>
<th>gap</th>
<th>Time (s)</th>
<th>B&B nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C = 30$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B = 250$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABMU</td>
<td>1423.51</td>
<td>1514</td>
<td>5.98 %</td>
<td>56.2</td>
<td>21140</td>
</tr>
<tr>
<td>ABMU + CCs</td>
<td>1469.97</td>
<td>1514</td>
<td>2.91 %</td>
<td>93</td>
<td>12538</td>
</tr>
<tr>
<td>ABMU + WRCCs</td>
<td>1469.97</td>
<td>1514</td>
<td>2.91 %</td>
<td>91.7</td>
<td>12538</td>
</tr>
<tr>
<td>ABMU + RCCs</td>
<td>1486</td>
<td>1514</td>
<td>1.85 %</td>
<td>21.6</td>
<td>2205</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Model</th>
<th>LR</th>
<th>OPT</th>
<th>gap</th>
<th>Time (s)</th>
<th>B&B nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBMU</td>
<td>1471.08</td>
<td>1514</td>
<td>2.83 %</td>
<td>836.2</td>
<td>4158</td>
</tr>
<tr>
<td>ABMU + CPCs</td>
<td>1482.27</td>
<td>1514</td>
<td>2.10 %</td>
<td>9.7</td>
<td>3137</td>
</tr>
<tr>
<td>ABMU + CCs + CPCs</td>
<td>1482.68</td>
<td>1514</td>
<td>2.07 %</td>
<td>47.7</td>
<td>6736</td>
</tr>
<tr>
<td>ABMU + WRCCs + CPCs</td>
<td>1482.68</td>
<td>1514</td>
<td>2.07 %</td>
<td>46.5</td>
<td>6736</td>
</tr>
<tr>
<td>ABMU + RCCs + CPCs</td>
<td>1483</td>
<td>1514</td>
<td>2.05 %</td>
<td>7.6</td>
<td>794</td>
</tr>
<tr>
<td>DBMU + CPCs</td>
<td>1473.15</td>
<td>1514</td>
<td>2.70 %</td>
<td>1644.9</td>
<td>7351</td>
</tr>
</tbody>
</table>

B = 200

<table>
<thead>
<tr>
<th>Model</th>
<th>LR</th>
<th>OPT</th>
<th>gap</th>
<th>Time (s)</th>
<th>B&B nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABMU</td>
<td>1424.59</td>
<td>1543</td>
<td>7.67 %</td>
<td>199.3</td>
<td>69138</td>
</tr>
<tr>
<td>ABMU + CCs</td>
<td>1471.97</td>
<td>1543</td>
<td>4.60 %</td>
<td>610.3</td>
<td>73176</td>
</tr>
<tr>
<td>ABMU + WRCCs</td>
<td>1471.97</td>
<td>1543</td>
<td>4.60 %</td>
<td>608.6</td>
<td>73176</td>
</tr>
<tr>
<td>ABMU + RCCs</td>
<td>1448.54</td>
<td>1543</td>
<td>6.12 %</td>
<td>292.8</td>
<td>35133</td>
</tr>
<tr>
<td>DBMU</td>
<td>1479.13</td>
<td>1543</td>
<td>4.14 %</td>
<td>2034.1</td>
<td>13579</td>
</tr>
<tr>
<td>ABMU + CPCs</td>
<td>1485.81</td>
<td>1543</td>
<td>3.71 %</td>
<td>163.9</td>
<td>31239</td>
</tr>
<tr>
<td>ABMU + CCs + CPCs</td>
<td>1486.01</td>
<td>1543</td>
<td>3.69 %</td>
<td>335.1</td>
<td>40877</td>
</tr>
<tr>
<td>ABMU + WRCCs + CPCs</td>
<td>1486.01</td>
<td>1543</td>
<td>3.69 %</td>
<td>331.3</td>
<td>40877</td>
</tr>
<tr>
<td>ABMU + RCCs + CPCs</td>
<td>1491.11</td>
<td>1543</td>
<td>3.36 %</td>
<td>409</td>
<td>49691</td>
</tr>
<tr>
<td>DBMU + CPCs</td>
<td>1483.25</td>
<td>1543</td>
<td>3.87 %</td>
<td>2326.9</td>
<td>12886</td>
</tr>
</tbody>
</table>

B = 150

<table>
<thead>
<tr>
<th>Model</th>
<th>LR</th>
<th>OPT</th>
<th>gap</th>
<th>Time (s)</th>
<th>B&B nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABMU</td>
<td>1438.19</td>
<td>1605</td>
<td>10.39 %</td>
<td>312</td>
<td>94684</td>
</tr>
<tr>
<td>ABMU + CCs</td>
<td>1490.19</td>
<td>1605</td>
<td>7.15 %</td>
<td>812.7</td>
<td>122928</td>
</tr>
<tr>
<td>ABMU + WRCCs</td>
<td>1490.19</td>
<td>1605</td>
<td>7.15 %</td>
<td>805.2</td>
<td>122928</td>
</tr>
<tr>
<td>ABMU + RCCs</td>
<td>1455.7</td>
<td>1605</td>
<td>9.30 %</td>
<td>1929.6</td>
<td>274175</td>
</tr>
<tr>
<td>DBMU</td>
<td>1502.69</td>
<td>1605</td>
<td>6.37 %</td>
<td>5394.7</td>
<td>47091</td>
</tr>
<tr>
<td>ABMU + CPCs</td>
<td>1513.65</td>
<td>1605</td>
<td>5.69 %</td>
<td>675</td>
<td>115081</td>
</tr>
<tr>
<td>ABMU + CCs + CPCs</td>
<td>1513.2</td>
<td>1605</td>
<td>5.72 %</td>
<td>1200.3</td>
<td>150924</td>
</tr>
<tr>
<td>ABMU + WRCCs + CPCs</td>
<td>1515.2</td>
<td>1605</td>
<td>5.72 %</td>
<td>1194.5</td>
<td>150924</td>
</tr>
<tr>
<td>ABMU + RCCs + CPCs</td>
<td>1501.91</td>
<td>1605</td>
<td>6.42 %</td>
<td>1418.2</td>
<td>189186</td>
</tr>
<tr>
<td>DBMU + CPCs</td>
<td>1511.58</td>
<td>1605</td>
<td>5.82 %</td>
<td>6755.1</td>
<td>51138</td>
</tr>
</tbody>
</table>

B = 100

<table>
<thead>
<tr>
<th>Model</th>
<th>LR</th>
<th>OPT</th>
<th>gap</th>
<th>Time (s)</th>
<th>B&B nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABMUD</td>
<td>1424.42</td>
<td>1514</td>
<td>5.92 %</td>
<td>31.6</td>
<td>12026</td>
</tr>
<tr>
<td>ABMUD + CCs</td>
<td>1470.05</td>
<td>1514</td>
<td>2.90 %</td>
<td>40.9</td>
<td>6866</td>
</tr>
<tr>
<td>ABMUD + WRCCs</td>
<td>1470.05</td>
<td>1514</td>
<td>2.90 %</td>
<td>41.1</td>
<td>6866</td>
</tr>
<tr>
<td>ABMUD + RCCs</td>
<td>1491</td>
<td>1514</td>
<td>1.52 %</td>
<td>11.2</td>
<td>1377</td>
</tr>
<tr>
<td>DBMUD</td>
<td>1470.8</td>
<td>1514</td>
<td>2.85 %</td>
<td>1141.4</td>
<td>7217</td>
</tr>
<tr>
<td>ABMUD + CPCs</td>
<td>1482.44</td>
<td>1514</td>
<td>2.08 %</td>
<td>9.4</td>
<td>3408</td>
</tr>
<tr>
<td>ABMUD + CCs + CPCs</td>
<td>1482.64</td>
<td>1514</td>
<td>2.07 %</td>
<td>33</td>
<td>5187</td>
</tr>
<tr>
<td>ABMUD + WRCCs + CPCs</td>
<td>1482.64</td>
<td>1514</td>
<td>2.07 %</td>
<td>33.2</td>
<td>5187</td>
</tr>
<tr>
<td>ABMUD + RCCs + CPCs</td>
<td>1488.5</td>
<td>1514</td>
<td>1.68 %</td>
<td>14.4</td>
<td>1641</td>
</tr>
<tr>
<td>DBMUD + CPCs</td>
<td>1473.18</td>
<td>1514</td>
<td>2.70 %</td>
<td>679.6</td>
<td>3836</td>
</tr>
</tbody>
</table>

B = 50

<table>
<thead>
<tr>
<th>Model</th>
<th>LR</th>
<th>OPT</th>
<th>gap</th>
<th>Time (s)</th>
<th>B&B nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABMUD</td>
<td>1431.5</td>
<td>1514</td>
<td>5.45 %</td>
<td>12</td>
<td>3092</td>
</tr>
<tr>
<td>ABMUD + CCs</td>
<td>1472.99</td>
<td>1514</td>
<td>2.71 %</td>
<td>28.6</td>
<td>3375</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Model</th>
<th>LR</th>
<th>OPT</th>
<th>gap</th>
<th>Time (s)</th>
<th>B&B nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABMUD + WRCCs</td>
<td>1472.99</td>
<td>1514</td>
<td>2.71 %</td>
<td>28</td>
<td>3375</td>
</tr>
<tr>
<td>ABMUD + RCCs</td>
<td>1484.85</td>
<td>1514</td>
<td>1.93 %</td>
<td>15.5</td>
<td>1384</td>
</tr>
<tr>
<td>DBMUD</td>
<td>1474.02</td>
<td>1514</td>
<td>2.64 %</td>
<td>542.1</td>
<td>2053</td>
</tr>
<tr>
<td>ABMUD + CPCs</td>
<td>1483.74</td>
<td>1514</td>
<td>2.00 %</td>
<td>2.6</td>
<td>676</td>
</tr>
<tr>
<td>ABMUD + CCs + CPCs</td>
<td>1484.23</td>
<td>1514</td>
<td>1.97 %</td>
<td>14.3</td>
<td>1447</td>
</tr>
<tr>
<td>ABMUD + WRCCs + CPCs</td>
<td>1484.23</td>
<td>1514</td>
<td>1.97 %</td>
<td>14.3</td>
<td>1447</td>
</tr>
<tr>
<td>ABMUD + RCCs + CPCs</td>
<td>1484.9</td>
<td>1514</td>
<td>1.92 %</td>
<td>21.5</td>
<td>2060</td>
</tr>
<tr>
<td>DBMUD + CPCs</td>
<td>1475.6</td>
<td>1514</td>
<td>2.54 %</td>
<td>165.6</td>
<td>776</td>
</tr>
</tbody>
</table>

B = 25

<table>
<thead>
<tr>
<th>Model</th>
<th>LR</th>
<th>OPT</th>
<th>gap</th>
<th>Time (s)</th>
<th>B&B nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABMUD</td>
<td>1455.94</td>
<td>1577</td>
<td>7.68 %</td>
<td>27.4</td>
<td>9807</td>
</tr>
<tr>
<td>ABMUD + CCs</td>
<td>1488.37</td>
<td>1577</td>
<td>5.62 %</td>
<td>78</td>
<td>11248</td>
</tr>
<tr>
<td>ABMUD + WRCCs</td>
<td>1488.37</td>
<td>1577</td>
<td>5.62 %</td>
<td>77.3</td>
<td>11248</td>
</tr>
<tr>
<td>ABMUD + RCCs</td>
<td>1490.66</td>
<td>1577</td>
<td>5.51 %</td>
<td>124.9</td>
<td>13401</td>
</tr>
<tr>
<td>DBMUD</td>
<td>1491.61</td>
<td>1577</td>
<td>5.41 %</td>
<td>2755.6</td>
<td>10161</td>
</tr>
<tr>
<td>ABMUD + CPCs</td>
<td>1503.89</td>
<td>1577</td>
<td>4.64 %</td>
<td>38</td>
<td>8836</td>
</tr>
<tr>
<td>ABMUD + CCs + CPCs</td>
<td>1502.93</td>
<td>1577</td>
<td>4.70 %</td>
<td>96.8</td>
<td>10614</td>
</tr>
<tr>
<td>ABMUD + WRCCs + CPCs</td>
<td>1502.93</td>
<td>1577</td>
<td>4.70 %</td>
<td>96.8</td>
<td>10614</td>
</tr>
<tr>
<td>ABMUD + RCCs + CPCs</td>
<td>1506.3</td>
<td>1577</td>
<td>4.48 %</td>
<td>145.2</td>
<td>15311</td>
</tr>
<tr>
<td>DBMUD + CPCs</td>
<td>1494.97</td>
<td>1577</td>
<td>5.20 %</td>
<td>1372.7</td>
<td>4825</td>
</tr>
</tbody>
</table>

C = 10

<table>
<thead>
<tr>
<th>Model</th>
<th>LR</th>
<th>OPT</th>
<th>gap</th>
<th>Time (s)</th>
<th>B&B nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABMUD</td>
<td>1887.71</td>
<td>2092</td>
<td>9.77 %</td>
<td>59.7</td>
<td>20486</td>
</tr>
<tr>
<td>ABMUD + CCs</td>
<td>1917.49</td>
<td>2092</td>
<td>8.34 %</td>
<td>2822.1</td>
<td>532430</td>
</tr>
<tr>
<td>ABMUD + WRCCs</td>
<td>1917.49</td>
<td>2092</td>
<td>8.34 %</td>
<td>2871.8</td>
<td>532430</td>
</tr>
<tr>
<td>ABMUD + RCCs</td>
<td>2002</td>
<td>2092</td>
<td>4.30 %</td>
<td>26.4</td>
<td>3104</td>
</tr>
<tr>
<td>DBMUD</td>
<td>1917.69</td>
<td>2092</td>
<td>8.33 %</td>
<td>12205.1</td>
<td>117377</td>
</tr>
<tr>
<td>ABMUD + CPCs</td>
<td>2039.59</td>
<td>2092</td>
<td>2.51 %</td>
<td>21.4</td>
<td>3662</td>
</tr>
<tr>
<td>ABMUD + CCs + CPCs</td>
<td>2039.61</td>
<td>2092</td>
<td>2.50 %</td>
<td>220.6</td>
<td>31443</td>
</tr>
<tr>
<td>ABMUD + WRCCs + CPCs</td>
<td>2039.61</td>
<td>2092</td>
<td>2.50 %</td>
<td>219.3</td>
<td>31443</td>
</tr>
<tr>
<td>ABMUD + RCCs + CPCs</td>
<td>1983.21</td>
<td>2092</td>
<td>5.20 %</td>
<td>60.3</td>
<td>6166</td>
</tr>
<tr>
<td>DBMUD + CPCs</td>
<td>1930.15</td>
<td>2092</td>
<td>7.74 %</td>
<td>23406.7</td>
<td>106411</td>
</tr>
</tbody>
</table>

B = 75

<table>
<thead>
<tr>
<th>Model</th>
<th>LR</th>
<th>OPT</th>
<th>gap</th>
<th>Time (s)</th>
<th>B&B nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABMUD</td>
<td>1898.58</td>
<td>2124</td>
<td>10.61 %</td>
<td>158.9</td>
<td>46679</td>
</tr>
<tr>
<td>ABMUD + CCs</td>
<td>1920.7</td>
<td>2124</td>
<td>9.57 %</td>
<td>4254.9</td>
<td>677417</td>
</tr>
<tr>
<td>ABMUD + WRCCs</td>
<td>1920.7</td>
<td>2124</td>
<td>9.57 %</td>
<td>4296.9</td>
<td>677417</td>
</tr>
<tr>
<td>ABMUD + RCCs</td>
<td>1973.62</td>
<td>2124</td>
<td>7.08 %</td>
<td>477.6</td>
<td>47054</td>
</tr>
<tr>
<td>DBMUD</td>
<td>1923.22</td>
<td>2124</td>
<td>9.45 %</td>
<td>20610.4</td>
<td>324778</td>
</tr>
<tr>
<td>ABMUD + CPCs</td>
<td>2034.45</td>
<td>2124</td>
<td>4.22 %</td>
<td>187.6</td>
<td>22831</td>
</tr>
<tr>
<td>ABMUD + CCs + CPCs</td>
<td>2038.52</td>
<td>2124</td>
<td>4.02 %</td>
<td>1532.3</td>
<td>170760</td>
</tr>
<tr>
<td>ABMUD + WRCCs + CPCs</td>
<td>2038.52</td>
<td>2124</td>
<td>4.02 %</td>
<td>1530.6</td>
<td>170760</td>
</tr>
<tr>
<td>ABMUD + RCCs + CPCs</td>
<td>2024</td>
<td>2124</td>
<td>4.71 %</td>
<td>884.9</td>
<td>85606</td>
</tr>
<tr>
<td>DBMUD + CPCs</td>
<td>1933.08</td>
<td>2124</td>
<td>8.99 %</td>
<td>114424.1</td>
<td>465179</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Model</th>
<th>LR</th>
<th>OPT</th>
<th>gap</th>
<th>Time (s)</th>
<th>B&B nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>B = 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABMU</td>
<td>1964.15</td>
<td>2201</td>
<td>10.76%</td>
<td>289.3</td>
<td>78782</td>
</tr>
<tr>
<td>ABMU + CCs</td>
<td>1975.21</td>
<td>2201</td>
<td>10.26%</td>
<td>4675.1</td>
<td>756023</td>
</tr>
<tr>
<td>ABMU + WRCCs</td>
<td>1975.21</td>
<td>2201</td>
<td>10.26%</td>
<td>4679.82</td>
<td>756023</td>
</tr>
<tr>
<td>ABMU + RCCs</td>
<td>2006.22</td>
<td>2201</td>
<td>8.85%</td>
<td>2415.3</td>
<td>259408</td>
</tr>
<tr>
<td>DBMU</td>
<td>1986.8</td>
<td>2201</td>
<td>9.73%</td>
<td>32623.7</td>
<td>484605</td>
</tr>
<tr>
<td>ABMU + CPCs</td>
<td>2055.51</td>
<td>2201</td>
<td>6.61%</td>
<td>325.5</td>
<td>30140</td>
</tr>
<tr>
<td>ABMU + CCs + CPCs</td>
<td>2053.74</td>
<td>2201</td>
<td>6.69%</td>
<td>3556.5</td>
<td>388168</td>
</tr>
<tr>
<td>ABMU + WRCCs + CPCs</td>
<td>2053.74</td>
<td>2201</td>
<td>6.69%</td>
<td>3549.8</td>
<td>388168</td>
</tr>
<tr>
<td>ABMU + RCCs + CPCs</td>
<td>2027.55</td>
<td>2201</td>
<td>7.78%</td>
<td>2900.1</td>
<td>229964</td>
</tr>
<tr>
<td>DBMU + CPCs</td>
<td>1999.02</td>
<td>2201</td>
<td>9.18%</td>
<td>68138.7</td>
<td>356335</td>
</tr>
<tr>
<td>B = 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABMUD</td>
<td>1883.52</td>
<td>2092</td>
<td>9.97%</td>
<td>18.1</td>
<td>11920</td>
</tr>
<tr>
<td>ABMUD + CCs</td>
<td>1917.49</td>
<td>2092</td>
<td>8.34%</td>
<td>1708.5</td>
<td>379788</td>
</tr>
<tr>
<td>ABMUD + WRCCs</td>
<td>1917.49</td>
<td>2092</td>
<td>8.34%</td>
<td>1736.5</td>
<td>379788</td>
</tr>
<tr>
<td>ABMUD + RCCs</td>
<td>2020.11</td>
<td>2092</td>
<td>3.44%</td>
<td>38.1</td>
<td>8706</td>
</tr>
<tr>
<td>DBMUD</td>
<td>1917.69</td>
<td>2092</td>
<td>8.33%</td>
<td>10799.5</td>
<td>129198</td>
</tr>
<tr>
<td>ABMUD + CPCs</td>
<td>2036.24</td>
<td>2092</td>
<td>2.67%</td>
<td>17.4</td>
<td>4753</td>
</tr>
<tr>
<td>ABMUD + CCs + CPCs</td>
<td>2039.92</td>
<td>2092</td>
<td>2.49%</td>
<td>111.1</td>
<td>17620</td>
</tr>
<tr>
<td>ABMUD + WRCCs + CPCs</td>
<td>2039.92</td>
<td>2092</td>
<td>2.49%</td>
<td>117.1</td>
<td>17620</td>
</tr>
<tr>
<td>ABMUD + RCCs + CPCs</td>
<td>1998.11</td>
<td>2092</td>
<td>4.49%</td>
<td>11.7</td>
<td>1941</td>
</tr>
<tr>
<td>DBMUD + CPCs</td>
<td>1928.64</td>
<td>2092</td>
<td>7.81%</td>
<td>21621</td>
<td>128285</td>
</tr>
<tr>
<td>B = 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABMUD</td>
<td>1885.66</td>
<td>2124</td>
<td>9.86%</td>
<td>36.6</td>
<td>19892</td>
</tr>
<tr>
<td>ABMUD + CCs</td>
<td>1917.49</td>
<td>2092</td>
<td>8.34%</td>
<td>1347</td>
<td>281829</td>
</tr>
<tr>
<td>ABMUD + WRCCs</td>
<td>1917.49</td>
<td>2092</td>
<td>8.34%</td>
<td>1349.4</td>
<td>281829</td>
</tr>
<tr>
<td>ABMUD + RCCs</td>
<td>2030.00</td>
<td>2092</td>
<td>2.96%</td>
<td>31.6</td>
<td>5739</td>
</tr>
<tr>
<td>DBMUD</td>
<td>1917.69</td>
<td>2092</td>
<td>8.33%</td>
<td>10291.1</td>
<td>133657</td>
</tr>
<tr>
<td>ABMUD + CPCs</td>
<td>2037.04</td>
<td>2092</td>
<td>2.63%</td>
<td>20.9</td>
<td>4644</td>
</tr>
<tr>
<td>ABMUD + CCs + CPCs</td>
<td>2035.53</td>
<td>2092</td>
<td>2.70%</td>
<td>146</td>
<td>21419</td>
</tr>
<tr>
<td>ABMUD + WRCCs + CPCs</td>
<td>2035.53</td>
<td>2092</td>
<td>2.70%</td>
<td>147.1</td>
<td>21419</td>
</tr>
<tr>
<td>ABMUD + RCCs + CPCs</td>
<td>2001.29</td>
<td>2092</td>
<td>4.34%</td>
<td>30.1</td>
<td>4760</td>
</tr>
<tr>
<td>DBMUD + CPCs</td>
<td>1925.75</td>
<td>2124</td>
<td>7.95%</td>
<td>21469.3</td>
<td>119858</td>
</tr>
<tr>
<td>B = 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABMUD</td>
<td>1896.09</td>
<td>2124</td>
<td>10.73%</td>
<td>128.5</td>
<td>55039</td>
</tr>
<tr>
<td>ABMUD + CCs</td>
<td>1920.09</td>
<td>2124</td>
<td>9.60%</td>
<td>2415.3</td>
<td>435752</td>
</tr>
<tr>
<td>ABMUD + WRCCs</td>
<td>1920.09</td>
<td>2124</td>
<td>9.60%</td>
<td>2383.7</td>
<td>435752</td>
</tr>
<tr>
<td>ABMUD + RCCs</td>
<td>1987.33</td>
<td>2124</td>
<td>6.43%</td>
<td>141.3</td>
<td>18714</td>
</tr>
<tr>
<td>DBMUD</td>
<td>1920.96</td>
<td>2124</td>
<td>9.56%</td>
<td>16811.6</td>
<td>222466</td>
</tr>
<tr>
<td>ABMUD + CPCs</td>
<td>2037.37</td>
<td>2124</td>
<td>4.08%</td>
<td>176</td>
<td>31359</td>
</tr>
<tr>
<td>ABMUD + CCs + CPCs</td>
<td>2037.31</td>
<td>2124</td>
<td>4.08%</td>
<td>740.9</td>
<td>91765</td>
</tr>
<tr>
<td>ABMUD + WRCCs + CPCs</td>
<td>2037.31</td>
<td>2124</td>
<td>4.08%</td>
<td>737.8</td>
<td>91765</td>
</tr>
<tr>
<td>Model</td>
<td>LR</td>
<td>OPT</td>
<td>gap</td>
<td>Time (s)</td>
<td>B&B nodes</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>ABMUD + RCCs + CPCs</td>
<td>1993.02</td>
<td>2124</td>
<td>6.17 %</td>
<td>157.4</td>
<td>18552</td>
</tr>
<tr>
<td>DBMUD + CPCs</td>
<td>1930.97</td>
<td>2124</td>
<td>9.09 %</td>
<td>20812.3</td>
<td>143969</td>
</tr>
</tbody>
</table>

Something of note before we analyze the results is that the linear programming relaxation values of the models that use algorithm 4.3 to separate RCCs (with or without CPCs) can not be compared to the other linear programming relaxations due to the fact that they start off without any capacity constraints. The only possible comparison with the other models is in the total running time and/or number of B&B nodes. In addition to this, any remarks made about linear programming relaxation values may not be true to this model since the behavior can not be controlled, i.e., it could happen that in the root node only a small set of inequalities are added leading to a poor starting linear programming relaxation value but it could also happen that many inequalities are added in the root node leading to a good linear programming relaxation starting value. This is not in any way related to any parameters and the fact that the linear programming relaxation starts with a low value does not mean the problem will not be solved rapidly and vice-versa.

The first conclusion we can draw from these results is that the value of B still influences the problem in the same sense as in the TSP case, that is, with lower values of B the optimal value increases but the linear programming relaxation values not so much. That influence is not as noticeable though, specially with a lower capacity. A possible explanation could have to do with the fact that with lower capacities the routes are smaller in respect to the number of nodes (or arcs).

Secondly we can clearly see that using CCs or the weak separation for the RCCs leads to the same results. What was observed is that the minimal cuts being provided by the max-flow algorithm always produced small S sets and so the total demand in S would always be smaller than the maximum capacity. We tried to find additional minimal cuts (since usually a max-flow problem leads to several different minimal cuts with the same value) but the results did not improve.

A third conclusion from this table is the fact that using algorithm 4.3 that uses both RCCs and CCs is clearly the best option with respect to the
algorithms we developed since it often leads to cases with a reduced number of B&B nodes and a reduced running time when compared to models using only CCs. What is interesting is that using algorithm 4.3 and CPCs at the same time is usually worse than using them separately, i.e., in most cases it is better to use either one or the other but not both. Even though CPCs still make a big difference in terms of time to optimality, this is not as noticeable when compared to the use of RCCs. The latter can compete and sometimes outperform CPLEX in regards to running time. They do, almost always, outperform CPLEX in the number of B&B nodes in the tree.

Finally, there does not seem to be much difference between the upward arcs only case and the upward and downward arcs case and, once again, the disaggregated models are simply not worth using and are consistently outperformed by any other model.
Chapter 6

Conclusions and future work

In this final chapter we will start with a small overview of the purpose of this thesis and present the main conclusions we can draw from the study that took place. Followed by that, and because this dissertation is still a first step on the study of the Electric Vehicle Routing Problem (EVRP), we will discuss future planned work.

6.1 Main conclusions

In this thesis we defined the EVRP, which is a variant of the classical Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP) that considers electric vehicles. Our main purpose was to study flow-based models for the EVRP based on existing flow-based models for the TSP and VRP. Electric vehicles behave differently from vehicles with a regular combustion engine and so there are additional aspects to consider in the EVRP.

We proposed an energy consumption function which depends not only on the arc used but also on the current load flow of the vehicle when traversing that arc. This leads to models with two flow systems - one for the load and one for the energy - in which one flow system depends on the other. This situation, coupled with the fact that we can have arcs on which the electric vehicle actually recuperates energy, and the important practical aspect, made the EVRP a very interesting problem to study.

We developed branch-and-cut methods, that use Connectivity Cuts and/or Rounded Capacity Cuts, that were implemented with the use of the Concert Technology, which is part of the CPLEX software. With the use of randomly
generated instances we provided some results for the models proposed with or without the use of cutting planes.

Our main conclusion is that the current approaches to solve the TSP or VRP can not be expected to work in the EVRP as well as in the classical problem. What we noticed from this study is that the valid inequalities we used were not enough to deal with the increasing gaps caused by lower values of B. Note that the instances used have 20 nodes and so the running times were not satisfactory in our opinion. Despite this, the Rounded Capacity Cuts produced some interesting results and managed to be competitive towards the CPLEX integrated cuts in the VRP variant.

The maximum battery charge of a vehicle greatly influences the problem but that influence is not as strong when we consider vehicle capacities and the maximum capacity is low. We can conclude though that the energy flow system is an aspect of the model that must be explored.

6.2 Future work

Our plans for the future are to continue the study of the EVRP but by looking at the problem from a different angle. We concluded that the energy flow system needs to be explored in the sense that we need to find sets of valid inequalities for this system. The main difficulty we seem to have is the fact that the energy flow system does not depend only on the arc selection variables but also on the load flow. If the energy consumption function did not depend on the load of the vehicle then we would have an energy flow system that would be similar to the current load flow system.

One approach that we have considered is discretizing the models. There are many ways we could do that since we have three sets of variables but we still need to discuss which of the possibilities we wish to try. This could even help solving another aspect which is the fact that the energy flow variables do not have the “correct” values for the upward and downward arcs case.

Finally, we wish to incorporate recharging stations in our study although this would only come after the energy flow system’s study is complete. In the long term, we also want to add other complexities to the problem such as time-windows. But, as said, the focus of our near future work is the energy flow system.
References

