A stochastic model of centriole assembly

Marco António Dias Louro
O trabalho desenvolvido para esta dissertação foi efetuado no âmbito de uma colaboração entre os grupos chefiados pelo Dr. Jorge Carneiro e pela Dr.ª Mónica Bettencourt-Dias, no Instituto Gulbenkian de Ciência.
Acknowledgements

First of all, I would like to thank the people who supported me during my first incursion into science. To my supervisor, Jorge Carneiro – I am deeply grateful for all the discussions and insights you provided regarding my work. Thank you also for presenting me to the world of quantitative and mathematical biology. To Mónica Bettencourt-Dias – thank you for presenting me to this project. Thank you so much for all your support all throughout and for allowing me to participate in so many different scientific activities. To my colleagues at both the QOB and CCR groups – thank you for all the help you gave me and for sharing your experiences in scientific research. Finally, a big thanks to the IGC community who received me so well. I would also like to thank Francisco Dionísio for all the attention and for being an inspiration as a teacher.

Second, I would like to thank my friends and my family – thank you for your unconditional support and all your care. You are the lighter side of things and the ones you always cheer me up after a long day. I cannot thank you enough for having you in my life.
The control of centrosome numbers is essential to ensure cellular integrity and viability. This control depends on the ability of the centrosomal structure, the centriole, to undergo duplication once and only once per cell cycle. It is known that the master regulator of centriole biogenesis is the enzyme Plk4. A mathematical model of Plk4 activity was used to conclude that there is a concentration threshold which must be overcome in order to produce enough active molecules to induce centriole biogenesis. This suggests a mechanism for regulating the onset of centriole duplication but it does not relate Plk4 concentration to centriole numbers nor explain how the system can account for fluctuations in its levels.

In this dissertation we sought to provide an explanation for the fidelity of the process of centriole duplication. Our hypothesis is that the formation of an incipient scaffolding structure, named the cartwheel, is the critical step for controlling centriole numbers. The cartwheel core is composed of stacked Sas-6 rings, a protein whose function depends on Plk4. We postulated that if Sas-6 tends toward stacking on top of the first cartwheel that arises, promoting its elongation, instead of forming a new one this could prevent the formation of supernumerary structures and indirectly account for noise in Plk4 concentration. In its turn, since one cartwheel corresponds to a single centriole, this could explain how centriole numbers are kept in check.

We developed stochastic models in order to address the efficiency of the stacking mechanism in controlling cartwheel/centriole numbers. Our analysis shows that even relatively low stacking rates are sufficient for reducing the rate at which the second cartwheel is formed. The average rate of cartwheel elongation on the other hand is approximately constant. Moreover, the response of the system to higher Sas-6 availability is not linear, suggesting there is a set of conditions in which cartwheel numbers remain approximately the same but their length varies.

In order to test some of these predictions, it is necessary to measure cartwheel length. We proposed that this could be done by using the aspect ratio distribution of randomly generated cartwheel cross-sections. We conducted a power analysis and concluded that this method can distinguish between cartwheels of different lengths. Moreover, the average aspect-ratio can be used as a cartwheel length estimator, at least in a given range of values.

Our analysis suggests that the proposed stacking mechanism can allow the cell to control cartwheel and presumably centriole numbers. The same mechanism also implies that cartwheel length is distributed. We suggested a method which can simplify the experimental procedure for measuring these lengths.

Keywords: Centriole duplication; Cartwheel assembly; Stacking mechanism; Stochastic chemical kinetics; Cartwheel length estimation
Resumo

O controlo do número de centrossomas é essencial para garantir a integridade e a viabilidade da célula. Este controlo depende da capacidade que a estrutura principal do centrossoma, o centríolo, tem em sofrer duplicação uma única vez por ciclo celular. Sabe-se que o regulador principal da biogénese de centríolos é o enzima Plk4. Um modelo matemático da atividade de Plk4 foi usado para concluir que existe um limiar de concentração que deve ser ultrapassado de modo a produzir moléculas ativas suficientes para induzir a biogénese de centríolos. Isto sugere um mecanismo de regulação da iniciação do processo de duplicação dos centríolos mas não relaciona a concentração de Plk4 com o número de centríolos nem explica como o sistema pode ter conta flutuações nos seus níveis.

Nesta dissertação procurámos providenciar uma explicação para a fidelidade do processo de duplicação centríolar. A nossa hipótese é que a formação de uma estrutura de suporte incipiente, nomeada de "cartwheel", é o passo crítico para controlar o número de centríolos. O cerne da "cartwheel" é composto de anéis empilhados de Sas-6, uma proteína cuja função depende de Plk4. Postulámos que se o Sas-6 tender para o empilhamento sobre a primeira "cartwheel" que surja, promovendo o seu alongamento, ao invés de formar uma nova, poderia impedir a formação de estruturas supernumerárias e ter em conta ruído nos níveis de Plk4. Por sua vez, dado que uma "cartwheel" corresponde a um único centríolo, isto poderia explicar como o número de centríolos é controlado.

Desenvolvemos modelos estocástico de modo a abordar a eficiência do mecanismo de empilhamento no controlo de número de "cartwheels"/centríolos. A nossa análise revela que mesmo taxas de empilhamento relativamente baixas são suficientes para reduzir a taxa a que a segunda "cartwheel" é formada. A taxa média de alongamento, por outro lado, é aproximadamente constante. Adicionalmente, a resposta do sistema à maior disponibilidade de Sas-6 não é linear, o que sugere que há um conjunto de condições nas quais os números de "cartwheels" se mantêm aproximadamente iguais mas o seu comprimento varia.

De forma a testar algumas destas previsões, é necessário medir o comprimento das "cartwheels". Propusemos que isto pode ser feito utilizando a distribuição de "aspect ratios" de secções de "cartwheels" geradas aleatoriamente. Efetuámos uma análise de potência e concluímos que este método pode ser utilizado para distinguir entre "cartwheels" de tamanhos diferentes. Adicionalmente, o "aspect ratio" médio pode ser usado como um estimador do comprimento de "cartwheels", pelo menos num determinado intervalo de valores.

A nossa análise sugere que o mecanismo de empilhamento proposto pode permitir que a célula controle o número de "cartwheels" e, presumivelmente, de centríolos. Este mecanismo também resulta numa distribuição do comprimento das "cartwheels". Sugerimos um método que pode simplificar o procedimento experimental para medir estes comprimentos.

Palavras-chave: Duplicação de centríolos; Montagem de "cartwheels"; Mecanismo de empilhamento; Cinética química estocástica; Estimação do comprimento de "cartwheels"
Resumo alargado

A regulação do número de centrossomas é fundamental para garantir a viabilidade de uma célula. O centrossoma é um organelo cuja função é altamente conservada em várias linhagens de eucariotas, nas quais atua como o principal centro organizador de microtúbulos. Desempenha um papel fulcral na organização do fuso mitótico e, consequentemente, no processo de divisão celular. Sabe-se que a ocorrência de anomalias numéricas, nomeadamente o surgimento de centrossomas supranumerários, tem consequências frequentemente nefastas para a célula e para o organismo, sendo a mais notável, a incidência de cancro.

A regulação do número de centrossomas depende sobretudo da capacidade que sua estrutura principal, o centríolo, tem em duplicar-se uma única vez por cada ciclo celular. O centríolo consiste numa estrutura proteica em forma de barril, composta por nove tripletos de microtúbulos que apresentam uma simetria radial característica. Os avanços recentes nas áreas da transcriptómica e proteómica permitiram caracterizar o leque de componentes centriolares, incluindo aquele que é frequentemente entendido como o regulador principal da biogénese de centríolos, o enzima Plk4.

Um artigo recentemente publicado descreveu o mecanismo de atividade do Plk4. A sua ativação e marcação para degradação via proteossoma dependem de um mecanismo de fosforilação em trans. Um modelo matemático baseado neste mecanismo foi utilizado para concluir que existe um limiar de concentração da proteína, o qual deve ser ultrapassado de modo a produzir um número suficiente de moléculas ativas de modo a viabilizar o processo de duplicação. Embora isto defina um regime de condições em que a célula está ou não permisiva à biossíntese de centríolos, não relaciona um dado número de centríolos à concentração de Plk4, especialmente no que diz respeito ao surgimento de uma e apenas uma estrutura nova, nem como o sistema consegue responder a flutuações nas concentrações de Plk4 e manter o número correto de centríolos.

Para os efeitos desta dissertação, procurámos explicar como é que a célula pode garantir a fidelidade do processo de duplicação centríolar. A nossa hipótese assenta na formação de uma estrutura de suporte ao centríolo, que se forma nos estágios iniciais do processo biogenético, denominada de "cartwheel". O cerne desta estrutura é composto por dímeros de Sas-6, uma proteína cuja função depende da atividade do Plk4. Estes dímeros organizam-se em conjuntos de nove, com forma aproximadamente anelar, que se empilham uns sobre os outros. Existem evidências de que o tamanho destas pilhas é variável. Portanto, postulámos que após a formação da primeira "cartwheel" existe uma competição entre o empilhamento de moléculas de Sas-6 sobre a mesma, de forma a originar uma pilha de anéis, e a possibilidade de formar uma "cartwheel" nova. Se o empilhamento for predominante em relação à produção de novas estruturas, e sob o pressuposto de que existe uma correspondência de um para um entre "cartwheels" e centríolos, a célula poderá ser capaz de garantir que o processo de duplicação ocorra uma única vez. Este mecanismo também permite explicar como o ruído na concentração de Sas-6 e, indiretamente, Plk4, é neutralizado. Por exemplo, na eventualidade da ocorrência de um pico de concentração nos níveis das proteínas, este seria consumido pelo alongamento das pilhas mas não pela formação de "cartwheels"/centríolos novos.

De modo a poder responder se este mecanismo de empilhamento seria eficiente no controlo do número de "cartwheels" e, consequentemente, de centríolos, definimos dois modelos estocásticos. O
primeiro considera que a formação da "cartwheel" é o resultado final de uma cadeia linear de acontecimentos, ao passo que o segundo tem em conta dinâmicas de oligomerização e empilhamento de Sas-6 mais complexas. A análise do primeiro modelo revelou que não é necessário considerar uma taxa de empilhamento relativamente elevada para impedir que uma dada molécula de Sas-6 entre na composição de uma segunda "cartwheel". De facto, é a possibilidade de impedir a sua formação em cada um dos passos intermédios que constitui o fator determinante na redução da taxa de produção de "cartwheels" novas. Mesmo quando uma fonte constante de Sas-6 é adicionada, a taxa de formação de "cartwheels" na presença de um mecanismo inibitório é menor em várias ordens de magnitude que na ausência desse mesmo mecanismo.

No que diz respeito ao segundo modelo, obtivemos resultados semelhantes relativos ao mecanismo de empilhamento. Demonstrámos que não é necessário uma taxa de empilhamento relativamente elevada para inibir a formação de "cartwheels" supranumerárias. De facto, a nossa análise revelou que mesmo quando a produção de Sas-6 é aumentada, o sistema não responde linearmente, originando um menor número de estruturas individuais. Por outro lado, o alongamento das "cartwheels" procede de forma aproximadamente linear, em média. É possível depreender destes resultados que um ligeiro aumento nas concentrações de Plk4/Sas-6 se traduzia em pilhas mais longas mas não num número significativamente maior de "cartwheels". Também observámos que em condições propícias ao surgimento de "cartwheels" supra+numerárias, se a sua síntese for assíncrona, isso traduz-se uma diferença média de comprimentos entre as várias estruturas individuais; quanto mais cedo uma dada "cartwheel" é produzida, mais rapidamente inicia o processo de empilhamento e mais longa se torna em relação às outras.

Para testar experimentalmente as previsões dos modelos, uma possibilidade seria através da manipulação da expressão de Plk4/Sas-6 e avaliação da sua influência no número e comprimento das "cartwheels". De entre estas duas quantidades mensuráveis, obter experimentalmente a segunda apresenta mais dificuldades do ponto de vista técnico. De modo a colmatar algumas destas dificuldades, sugerimos um método que consiste em estimar o comprimento das "cartwheels" através da distribuição de "aspect-ratios" de secções aleatórias da estrutura. Efectuámos uma análise de potência que demonstrou que não só é possível distinguir duas distribuições de comprimentos diferentes, como também é possível estimar o comprimento de uma dada população usando o "aspect-ratio" médio como estimador, pelo menos numa determinada gama de valores.

A validade dos modelos aqui apresentados depende sobretudo de dois pressupostos-chave. Em primeiro lugar, os modelos assumem que a formação da cartwheel” é o passo determinante para o controlo do número de centríolos. Quanto a este pressuposto, podemos garantir pelo menos que a sua síntese é a primeira incidência no processo biogenético de que um centríolo está a ser formado. Em segundo lugar, assumimos que a "cartwheel" tem uma composição que assenta em anéis nónuplos de Sas-6, e que estes anéis podem formar pilhas sem restrição de comprimento. Caso o fator limitante da formação de "cartwheels" não seja a proteína Sas-6, os modelos podem ser ainda válidos se o fator limitante putativo mantiver a mesma organização, ou seja, conjuntos de nove subunidades que se empilham. No que diz respeito ao comprimento das pilhas, se existir um processo concorrente à formação de "cartwheels" que limita o seu alongamento, este deverá ser tido em conta pelos modelos. Embora não existam evidências claras para tal, é um aspeto que deverá ser abordado no futuro.

Os nossos resultados demonstram que do ponto de vista teórico o mecanismo proposto pode explicar
como a célula consegue controlar o número de centríolos, mediante a extrapolação de que estes correspondem ao número de cartwheels. Adicionalmente, a análise dos modelos sugere que a "cartwheel" tem uma distribuição de comprimentos, algo que não é frequentemente abordado na literatura. No entanto, existem algumas evidências que o comprimento da "cartwheel" pode ser relevante do ponto de vista fisiológico. Por fim, sugerimos um método que poderá constituir uma abordagem mais simples ao problema de medir o comprimento de uma estrutura sub-celular.
Contents

1 Introduction 1
 1.1 Motivation ... 1
 1.2 The centriole biogenetic pathway 2
 1.3 A mechanism for controlling centriole numbers 4
 1.4 Implementing the hypothesis 5

2 Aims and objectives ... 9

3 Model definition and analysis 11
 3.1 Qualitative formulation of the model 11
 3.2 A linear model of a biosynthetic pathway 12
 3.3 Fate of a single molecule 13
 3.4 Including a constant input of molecules 15
 3.5 Modelling second-order oligomerization and stacking
 3.5.1 General model dynamics 21
 3.5.2 Relation between individual cartwheel formation and elongation .. 22
 3.5.3 Parameter dependence of cartwheel formation and elongation 25
 3.5.4 Molecular levels of the intermediates 27

4 A method for estimating cartwheel length 31

5 Discussion 35
 5.1 Model assumptions .. 35
 5.2 Approach on model analysis 37
 5.3 Perspectives on centriole biogenesis 38

6 Concluding remarks 41

Bibliography 43

Appendices 47
 Methods ... 49
 Glossary ... 51
List of Figures

1.1 Centrosome structure .. 2
1.2 The centriole assembly process in human cells 3
1.3 Structure of the cartwheel .. 4
1.4 Example of a second-order reaction and corresponding Petri net .. 6

3.1 Illustration of a model for cartwheel assembly 12
3.2 Petri net representation of the linear sequence model for a single molecule 13
3.3 The probability of forming the end product decreases with the length of the sequence and k_s ... 15
3.4 Petri net representation of the reaction sequence scheme with input 16
3.5 The formation time of the end product is much longer in the presence of a diverting mechanism ... 18
3.6 Petri net representation of the model 20
3.7 Time-evolution of the second-order system 22
3.8 Formation of successive cartwheels occurs at an increasingly slower rate 23
3.9 The average and variance in the number of stacked rings in each cartwheel increases with time ... 24
3.10 Stacking is determinant for inhibiting cartwheel formation 25
3.11 Cartwheel elongation depends on the input and the number of structures that form 27
3.12 The distribution of intermediates is associated with cartwheel formation 29

4.1 Cylindrical contour of the cartwheel and possible cross-sections ... 32
4.2 Example of a random cross-section obtained with the algorithm ... 32
4.3 Aspect ratio distributions and power analysis 33
4.4 Average aspect ratio as a function of cartwheel size 34
Chapter 1

Introduction

1.1 Motivation

Controlling the number of certain subcellular structures is essential to ensure cellular integrity and viability of the organisms. An example of this is the case of the centrosome. The centrosome is the primary microtubule-organizing center in several groups of eukaryotes, such as animals and higher fungi (Fig. 1.1). When mature it consists of two to four centrioles surrounded by a proteinaceous matrix called the pericentriolar material (PCM); despite some variability in centrosomal structure, most functional aspects are retained among lineages [1]. The majority of centrosomal functions rely on the centriole. The centriole is a barrel-like arrangement of microtubule triplets displaying a highly conserved ninefold radial symmetry [2, 3]. It plays a crucial role during mitosis in the organization of the mitotic spindle. Moreover, the ability of the centriole to duplicate once and only once during each round of cell division is critical for allowing the daughter cells to inherit the correct number of centrioles [4]. The de-regulation of this duplication process can originate supernumerary centrioles or prevent them from duplicating, which in turn can result in several anomalies, such as chromosome missegration, the formation of a multipolar spindle or failure in undergoing mitosis altogether [5]. Numerical abnormalities of the like, in which supernumerary centrioles and centrosomes arise, have been linked to multiple human disorders, such as cancer [5, 6], microcephaly and dwarfism [6, 7].

This makes the centrosome and the centrioles a prime target for biomedical research. On the other hand, as a fundamental biology question, unraveling the mechanisms which determine this property is essential to understand centrosomal and centriolar physiology as well as the regulation of cell division. Even though recent technological advances have allowed to characterize the centriolar proteome [2] and interactome [8], the process remains poorly understood from a mechanistic point of view. Nonetheless, despite the plethora of centriolar components, the biogenetic process appears to depend on certain key elements, namely Plk4. Plk4 has been identified as the master regulator of centriole duplication; it has been shown that depletion of the endogenous protein prevents centriole biogenesis to occur while its overexpression is sufficient to induce the formation of supernumerary centrioles [9]. However, it is still not yet clear how its concentration is related to centriole numbers.

The key regulators in centriole biogenesis, namely Plk4, are generally understood as occurring at low levels in physiological conditions [10], suggesting they can be highly susceptible to fluctuations. Therefore, in order for centriole duplication to maintain its robustness the system must be able to counteract these fluctuations. From all these considerations, we were inclined to ask if there is a mechanism which can ensure centriole duplication occurs once and only once while also accounting for the robustness to noise in the concentration of its limiting factors.

In order to fully understand any biological process, quantitative studies are necessary. With the advent of molecular systems biology, mathematical models have been increasingly used to extract knowl-
The centrosome is the main microtubule-organizing center in several eukaryotic lineages. The figure depicts a centrosome prior to duplication. It is composed of two barrel-like structures called centrioles surrounded by a protein matrix, the pericentriolar material (PCM). The centrosome contains one mature (mother) centriole, which has distal and subdistal appendages, and an immature (daughter) centriole. Each of the centrioles is composed by nine microtubule triplets (the indicated A-, B-, and C-tubules, which are fused together). Duplication unfolds in late G1/S with the formation of a single procentriole in association with each of the pre-existing ones, yielding a total of four. This number is halved during cell division, such that each daughter cell inherits two centrioles. The pre-mitotic daughter centriole completes its development into a mother centriole through the acquisition of the distal and subdistal appendages, as well as a PCM cloud. The procentriole also transitions to a daughter centriole, thus reconstituting the centrosome. This figure was adapted from Brito et al. [4].

edge of these data [11]. However, these are still scarce when it comes to centriole biology. A recent paper used a model of Plk4 phosphorylation dynamics to conclude that there is a concentration threshold below which there are not enough active molecules to efficiently initiate centriole biogenesis [9]. While this could explain how the cell prevents centrioles from forming ad libitum, it does not relate active Plk4 concentration to centriole numbers and hence cannot explain how the duplication process is so strictly controlled. In addition to quantifying protein levels it is also important to describe the stoichiometry of supra-molecular complexes for accurately characterizing protein-protein interactions. In the absence of these data, mathematical models can still make use of whatever is available, provide quantitative predictions on the behavior of the system and describe the molecular mechanisms at hand. Therefore, modeling is a suitable approach for answering the main question of this dissertation.

1.2 The centriole biogenetic pathway

Centriole duplication is an extremely complex process showing evidence of tight spatial and temporal regulation (Fig. 1.2). It starts in interphase with a "licensing" step which triggers the initiation of the duplication process [4]. During this stage, Plk4 is concentrated at the centrosome. The role of Plk4 in centriole biogenesis depends on its self-activation through trans-autophosphorylation [9]. This mechanism also targets it for proteasomal degradation [9]. Asterless/Cep152 has been shown to recruit Plk4 to the centrosome in D. melanogaster [12], whereas in human cells this depends on the cooperation of Cep192 and Cep152 [13]. Another protein, STIL, has also been suggested to transport both Plk4 and Sas-6 to the centrosome, a function which depends on Plk4-mediated phosphorylation [14]. At the centrosome, Sas-6 acts as the core component of a structure named the cartwheel, which is synthesized near orthogonally to the walls of the pre-existing centrioles [15]. The formation of the cartwheel is the first physical evidence of the nascent procentriole and of its characteristic ninefold symmetry [4]. De-
Figure 1.2: The centriole assembly process in human cells. a) At the onset of centriole duplication, Plk4 localizes to the outer wall of the pre-existing centrioles; b) The accumulation of Sas-6 and Cep135 leads to cartwheel formation; c) Microtubule nucleation ensues as CPAP localizes to the centrosome and recruits γ-tubulin; microtubules are polymerized and elongated by the addition of α- and β-tubulin; the microtubule triplets bind to the cartwheel and enclose it in the procentriolar lumen; d) Centrosome separation occurs in G2, an event which precedes centriole disengagement during mitosis; e) Formation of a fully mature centrosome accompanied by compositional changes in its protein content; f) Transition from daughter to mother centriole through the recruitment of PCM components and acquisition of the distal and subdistal appendages, after another round of cell division. Centriole duplication and cell cycle stages are indicated at the top and bottom of the image. Key molecules and structural units are represented. Proteins represented in black indicate spatial and temporal localization in the assembly pathway. Proteins represented in red indicate the moment when they are dislocated from the centrosome. Proteins represented in green and orange represent increasing or decreasing levels at the daughter centriole, respectively. Figure retrieved from Brito et al. [4].

Effects in cartwheel structure frequently lead to structural aberrations and hinder the duplication process [16]. After cartwheel formation, CPAP, centrobin and γ-tubulin are recruited, an event which initiates microtubule nucleation around the cartwheel [4]. The development of the procentriole progresses with microtubule elongation and centriolar capping. In late-G2 phase, the pre-existing centrioles separate and further disengage during mitosis. Segregation of the centrioles during cytokinesis ensures that each daughter cell inherits a single pair of centrioles. During early G1, the procentriole transitions into a daughter centriole. The final steps of maturation occur after another mitotic round is completed and involve the formation of distal and subdistal appendages and PCM recruitment, completing the transition to a fully developed mother centriole.

It has been reported that the concentration of some key centriolar components oscillates along the cell cycle. For instance, it has been shown that Plk4 levels peak during mitosis [17], despite the onset of centriole biogenesis taking place during interphase. Also, centrosomal levels of STIL and Sas-6 are coordinated and reach their maximum during interphase [14]. Being limiting factors in centriole biogenesis, this suggests the process is temporally regulated. Moreover, it has been shown that the procentriole can reform in S-phase after the centrosome is ablated [18]. It has been shown that Cdk-1 has a role in negatively regulating Plk4 and STIL activity during mitosis, which suggests there is an interplay between centriole assembly and the cell-cycle machinery [19]. Concerning spatial regulation, other than
some centriolar components being actively concentrated at the centrosome, as we have mentioned, the PCM also seems to create an environment which favors microtubule polymerization [20]. Studies have shown that disruption of the PCM affects centriolar stability and eventually leads to centriole loss [21]. All these factors indicate regulation occurs at the various stages in centriole biogenesis, with a multitude of pathways probably acting in concert to guarantee proper centriolar and centrosomal function. Even so, centriole assembly depends mostly on a set of evolutionary conserved proteins. For example, in C. elegans they have been identified as ZYG-1, SAS-4, SAS-5, SPD-2 and SAS-6, where the first three are homologs of Plk4, CPAP and STIL/A2, respectively while the latter is a homolog to Sas-6 [22]. Therefore, it is also possible that the control of centriole duplication may also depend on a few key mechanisms, with the remaining players in the network acting to confer more robustness to the process.

1.3 A mechanism for controlling centriole numbers

The earliest physical sign that a centriole is being formed is cartwheel assembly. Its central hub consists of nine Sas-6 homodimers in ring-like arrangement (Fig. 1.3). The outwardly projecting coiled-coil domains of the dimers constitute the cartwheel spokes, which terminate in a distal structure called the pinhead. The pinhead consists of another protein, Bld10/Cep135, and binds to the A-tubule of the microtubule triplets. Other proteins have been suggested to cross-link the Sas-6 dimers, such as Ana2/SAS-5, further stabilizing the cartwheel.

![Figure 1.3: Structure of the cartwheel. a) 3D-model of the Trychonympha cartwheel emphasizing the core and spokes (light blue), and the pinheads (dark blue); b) Longitudinal image of a centriole with the cartwheel appearing in the proximal region of the lumen, at the bottom. Figure adapted from [16]](image)

Sas-6 stability and localization have been shown to depend on Plk4. FBWX5 is a F-box protein and a subunit of the SCF ubiquitin ligase complex which targets Sas-6 for degradation and is itself targeted for degradation by Plk4-mediated phosphorylation [23]. Therefore, Plk4 acts in preventing Sas-6 degradation. Regarding its localization, Plk4-dependent phosphorylation of STIL is required for shuttling
Sas-6 to the centrosome. When this is impaired, it can lead to failure in duplicating the centrioles [14]. Sas-6 dimerizes through interactions between its coiled-coils, and is also able to form higher-order structures through its globular N-terminal domains [24]. It has been shown that Sas-6 homodimers can arrange into cartwheel-like oligomers of varying size in vitro, although in vivo it occurs almost always in a ninefold symmetrical fashion. Despite that, quantitative studies have identified homodimers as the most abundant Sas-6 species in human cells [25]. Even when the protein is expressed at higher than physiological levels, the predominant oligomers contain about two to three dimers [24]. These results suggest that larger Sas-6 complexes are unstable. Indeed, experimentally measured dissociation constants for the N-terminal interaction revealed the interaction to be relatively weak [24]. So, although Sas-6 is a fundamental building block of the cartwheel, its assembly may depend on more than its self-oligomerization properties [26]. For instance, it has been shown that oligomerization of both Sas-6 and Ana2 is required for centriole assembly in Drosophila embryos, and that the two proteins cooperate in cartwheel formation [27]. Nevertheless, the key insights here are that Sas-6 is a limiting factor of centriole biogenesis and that it organizes itself in the cartwheel as a ninefold dimer ring.

Another feature of the cartwheel is that these ninefold Sas-6 rings arrange into multi-layered stacks. How these stacks assemble is not known. Some have speculated that these rings are formed in the lumen of the mother centriole and then transported to their typical position near the outer wall [26], though this has not been shown. Another feature of the cartwheel is that it shows length variation across different species, though only a few experimental measurements have been reported. An extreme example of this is the Trichonympha cartwheel which occupies approximately 90% of the centriolar lumen [28]. Other results in Chlamydomonas and Spermatozopsis have shown that cartwheel length varies along the cell cycle [29, 30]. The results also show a considerable degree of variation within each cell cycle stage. This suggests that there may be naturally occurring differences in cartwheel length within the same cell type.

From a modeling perspective on the control centriole numbers, cartwheel assembly shows some interesting properties: 1) it can be directly correlated to a single centriole; 2) its assembly depends on the master regulator of centriole biogenesis, Plk4; 3) its center hub contains Sas-6 homodimers that oligomerize into ring-like structures with a precise stoichiometry; 4) Sas-6 rings form stacks, the length of which may be variable. We hypothesize that these stacks elongate through the stacking of Sas-6 molecules on top of an existing cartwheel, eventually adding new rings to the structure. After the first complete ring is formed and if the stacking process is prevalent comparing to the formation of other individualized rings, then the cell can prevent the formation of supernumerary cartwheels. This should also account for the robustness to fluctuations in Plk4/Sas-6 levels. It could also explain how the cartwheel would arise as a stacked structure. This is the central hypothesis of this dissertation: the existence of a stacking mechanism which inhibits cartwheel formation and promotes the elongation of a pre-existing one by the successive addition of rings.

1.4 Implementing the hypothesis

The aforementioned hypothesis was addressed through modeling. Mathematical models have been used historically in physics to explain natural phenomena. In biology, their use is widespread in ecology,
metabolism and epidemiology, and there are also classical examples in neurophysiology and evolutionary theory, as well as developmental biology and immunology [31][32][33][34]. In the past few years, they have been brought to light due to the need of integrating systemically the ever-increasing volume of genomic and proteomic data into regulatory networks [35].

Chemically reacting systems have also been subjected to modeling. The traditional approach is through the use of deterministic reaction-rate equations which follow from the law of mass action [36]. In the past century, a stochastic discrete approach stemming from collision theory has been put forward. From a physical standpoint, it better reflects the fact that molecules are individual entities. In practice, it predicts the behavior of a system more accurately when the number of molecules is small compared to the continuous deterministic approach.

Chemically reacting systems can be modeled in this framework using a single chemical master equation which describe the temporal evolution of the number of molecules for all the species considered [35]. It is essentially a Markov model - the evolution of the system is independent from its history and the waiting time for each transition (reaction) is exponentially distributed. While the chemical master equation has been viewed as mathematically intractable, there are some cases in which it can be analytically solved. For the remainder, simulation methods such as the Gillespie algorithm have been developed [36]. The discrete stochastic framework is ideal for implementing cartwheel assembly as a chemically reacting system as it allows for the counting of individual structures, the explicit description of the hypothesized biochemical process and for the characterization of its driving forces.

In 1962, Carl Adam Petri provided a formalism called Petri nets which has been redeployed to formally represent and analyze chemical/biochemical reaction systems [37]. Petri nets are equivalent to the more conventional chemical equations but depict chemical species and reactions in a more graphically intuitive way (Fig. 1.4). Software tools such as Snoopy [38] make use of this notation in combination with simulation methods and the display of molecular counts for each species to animate reaction networks. This supplies a visual aide for understanding the behavior of a system, of which we took advantage using the above mentioned tool.

\[
A + B \rightarrow C
\]

Figure 1.4: Example of a second-order reaction and corresponding Petri net. The figure represents a reaction system in which a molecule of A and a molecule of B react to produce a molecule of C. The circles (places) indicate the indicated chemical species. The black dots (tokens) represent the molecules of each species. The square (transition) represents the reaction which takes as input a molecule of both A and B and yields a molecule of C, as indicated by the arrows (edges or arcs). Refer to Methods for Petri net notation and definitions.
To the best of our knowledge, there are no other examples of mathematical models addressing centriole duplication mechanistically. There are some reports of Markov models being used for describing the evolution of centriole numbers in a population of proliferating cells [39, 40], but place their focus on centriole duplication and inheritance as cellular-scale processes. Our hypothesis on the other hand, focuses on a putative mechanism at the molecular level.
Chapter 2

Aims and objectives

The overarching theme of this dissertation is the control of centriole duplication. The first goal of this dissertation was to propose a biological model capable of explaining how a centriole could undergo a single round of duplication per cell cycle. For this we started by collecting knowledge on the centriolar assembly pathway and its key molecular components. Then, we sought for the simplest explanation which could explain: 1) how a single centriole is formed; 2) how the system can account for molecular fluctuations in the centriolar components. As we have stated, our hypothesis is that the cartwheel is the minimal structure that will give rise to a centriole and that the stacking of its building blocks on top of an existing cartwheel should inhibit the formation of a second one. Under fluctuations in the levels of the building blocks, this should result in the cartwheel having a length distribution.

The second goal of this dissertation was to develop stochastic models based on this hypothesis and reflecting different levels of complexity. To analyze these models we combined analytical and simulation methods in order to best address each situation and to gain a more complete understanding of our proposal. In general terms, we set out to explore the conditions in which formation of the second cartwheel can be inhibited and how cartwheel formation and elongation depend on the model parameters.

Third, we deemed that measuring cartwheel length posed the more technically challenging requirement for testing model predictions. So, we suggested an experiment for obtaining the aspect-ratio distribution of random cartwheel cross-sections and conducted a power analysis to test whether it would be able to distinguish different length distributions and if it can be used as tool for estimating length.

In summary, we intended to propose a mechanism which should explain how the cell controls centriole numbers, to make quantitative predictions with respect to that mechanism through the use of mathematical models, and to propose a method for analyzing experiments designed to test some of these predictions.
Chapter 3

Model definition and analysis

In this section we define and discuss stochastic models based on the aforementioned hypothesis for centriole control. We begin by supplying a qualitative formulation of the model in which we describe our assumptions from a biological standpoint. Next, we defined a model which represents cartwheel assembly as a linear sequence of steps in all of which Sas-6 molecules can be diverted. This reflects the principle behind the proposed stacking mechanism. This model allows for direct mathematical analysis and permitted us to quantify cartwheel formation times with respect to the diverting mechanism. Finally, we construct a more complex model which includes second-order oligomerization and stacking dynamics. We proceeded to analyze it using numerical simulations. In this case, analysis of the model enabled us to address elongation dynamics in addition to cartwheel formation. The results for both models were compared appropriately.

3.1 Qualitative formulation of the model

In this section we provide a qualitative description of a model which allows for the control of centriole numbers through cartwheel assembly. Our hypothesis depends on a number of assumptions: 1) the cartwheel is the simplest individualized structure which can be correlated to a single centriole, and the earliest in the assembly pathway; 2) the minimal structure which defines the cartwheel is a ring of nine Sas-6 dimers, which act as the fundamental building blocks in the assembly process; 3) the intermediates in the assembly process are defined by the number of dimers they contain and are formed through oligomerization of smaller structures; 4) intermediates can dissociate into any combination of their components but the formation of a ninefold ring, i.e. a cartwheel, is irreversible; 5) there is a constant production of dimers which depends on the limiting factors of centriole biogenesis, such as Plk4; 6) intermediates in the cartwheel assembly process can irreversibly stack on top of an existing cartwheel; 7) the stacking of intermediates occurs in such a way that it allows for cartwheel-bound ninefold rings to form, at all times, i.e. there is a constraint to stacking relative to ring size but there are no steric constraints regarding the disposition of intermediates on top of the cartwheel; 8) the successive addition of rings can continue indefinitely, thus elongating the cartwheel; 9) stacking only occurs on newly formed cartwheels and not on the ones present at the mother centriole. Fig. 3.1 displays a schematic overview of the model.

This can be interpreted as a competition between cartwheel formation and elongation-by-stacking for a constant input of Sas-6 dimers. In other words, as soon as the first cartwheel is formed, the intermediates are diverted towards stacking, which in turn should inhibit the formation of additional separate structures. In quantitative terms, it should be noted that the constant net influx of molecules determines that there is a continuous formation and elongation of cartwheels. The critical insight is that, in these terms, stacking should considerably delay the formation of additional structures.
The Sas-6 dimer (C₁) is the fundamental building block of the cartwheel. Structures containing up to eight of these dimers represent intermediates in the process of cartwheel formation (in light blue and denoted Cᵢ, where i represents the dimer content of the intermediate). These are formed by combining smaller oligomers and are considered to be able to dissociate into their constituents. A reaction yielding a structure containing nine dimers defines a complete ring (dark blue) and originates a cartwheel (Cᵣ), which is also a readout for a single centriole. Intermediates can stack on top of this ring (dark blue ring overlapped with light blue intermediates) in a way which allows for a new ring to form; an intermediate of size i stacked on top of a cartwheel is referred to as Cᵢ*. Once this originates a complete ring stacked on top of a cartwheel, the resulting stack is also referred to as Cᵣ. The stacking process can continue indefinitely, further elongating the stacks.

3.2 A linear model of a biosynthetic pathway

The hypothesis underlying the model described in the previous section is that the stacking mechanism will inhibit the formation of more than one cartwheel. A simple question which we can ask is if we take a single dimer which was just produced, what is the probability that it will end up in a new cartwheel, given that it can also be incorporated into a stack. We can also ask if the presence of a cartwheel can slow down the time of formation of the next one if there is a constant input of these molecules.

Since we assumed that there are multiple possible combinations for a molecule of a given species, which in turn determines there are several paths to cartwheel formation or to stacking, it is impossible to obtain direct answers to these questions. So, let us suppose for now that cartwheel assembly can be simplified to a linear sequence of first-order reactions.

We define Cᵢ as the set of species representing the intermediates of cartwheel assembly, with i representing the order of the species in the sequence and ranging from 1 to the final step r. This index can be thought of as the dimer content of each species, in which case r would represent the size of the ring; i.e. r = 9. We consider that molecules in state Cᵢ can be converted into the next step in the sequence, Cᵢ₊₁, through an irreversible reaction with rate constant kᵣᵢ. Let us also consider that Cᵢ can be irreversibly diverted from the sequence, with rate constant kᵢ. This can be likened to the presence of a single cartwheel stacking up intermediates, with the difference that in this case there are no geometric constraints regarding the size of the intermediates. Production of the first species in the sequence C₁ occurs at a constant rate σ. Finally, we let Cᵣ denote the end product of the sequence, i.e. the cartwheel. This model can represented by the following reaction system:

\[
\begin{align*}
* & \xrightarrow{\sigma} C_1 \\
C_1 & \xrightarrow{k_{on}} C_{i+1} \\
C_1 & \xrightarrow{k_i} . & i <= r - 1
\end{align*}
\]
Figure 3.2: Petri net representation of the linear sequence model for a single molecule. The Petri net represents the case for $r = 9$. The nine places represent the C_i species, ordered in ascending order from left to right. The token represents the single starting C_1 molecule. The transitions connecting two places in the sequence represent the linear set of reactions leading to the formation of the end product. The transitions without an output arc represent the diversion reactions which prevent the molecule from reaching the final state. Refer to Methods for Petri net notation and definitions.

It should be noted that this system simplifies both the proposed oligomerization and stacking mechanisms. In the first case, it does not consider the possibility of combining intermediates of different sizes, neither their ability to dissociate. In the second case, it does not explicitly take into account the presence of cartwheels in the sense that: 1) the stacking rate depends on the number of cartwheels; and 2) stacking is not possible for all combinations of intermediates and cartwheel-bound species. For instance, a cartwheel bound to a dimer triplet cannot capture an intermediate containing more than six dimers, as that would exceed the size of a complete ring.

3.3 Fate of a single molecule

Consider a single molecule of the first species in the previously described sequence of intermediates. In the presence of a diverting mechanism, it is faced with two possible final outcomes: it either reaches the end of the sequence, thus forming a new structure, or it is diverted in its path. We can simplify the reaction system described in (3.1) to:

$$
C_i \xrightarrow{k_{on}} C_{i+1}
$$

$$
C_i \xrightarrow{k_s} C_i^*, \quad i \leq r - 1
$$

(3.2)

with k_{on} representing the rate at which the initial C_1 molecule progresses through each step of the sequence, k_s the rate at which is diverted and r is the length of the sequence. This is the simplest representation of the mechanism we hypothesized regarding the control of cartwheel numbers.

An advantage of this system is that is amenable to mathematical analysis, which allows for the derivation of general conclusions. We were interested in determining the probability that an initial C_1 molecule is able to reach the final step of the sequence, C_r. Additionally we meant to quantify how much this is reduced by increasing the value of diversion rate k_s and the number of steps. This is akin to asking how much the formation of a new cartwheel is inhibited by the stacking of Sas-6 intermediates on a preexisting one and by the stoichiometry of the complete ring.

We began by defining the random vector $T = (T_1, ..., T_{r-1})$ whose elements are the residence time of the molecule in the species C_i. These are assumed to be exponentially distributed with mean $1/(k_{on} + k_s)$. We proceed by defining a random vector $O = (O_1, ..., O_{r-1})$ where each element O_i corresponds to the sum of $T_1, ..., T_i$. So, each O_i variable measures the random time it take to complete i reactions. By
definition, the probability distribution of the sum of random variables is the convolution of the cumulative distribution function of each of the summed variables. Taking this into account, the cumulative distribution function \(F_{O_i} \) variable can be defined recursively as:

\[
F_{O_i}(t) = F_{F_i}(t)
\]

\[
F_{O_i}(t) = \int_0^t F_{F_i}(t-\tau)F_{O_i}(\tau) \, d\tau
\]

... \hspace{1cm} (3.3)

\[
F_{O_i}(t) = \int_0^t F_{F_i}(t-\tau)F_{O_{i-1}}(\tau) \, d\tau
\]

It should be noted that random times \(T \) or \(O \) do not distinguish if the initial molecule progressed along the sequence of intermediates or if it was diverted. However, completing \(i \) reactions as the definition of \(O \) implies that the molecule did not get diverted in its path, for this event is irreversible. Therefore we must condition the probability distribution functions on the probability that the intermediates remain in the sequence after \(i \) reactions. It is also convenient to define the probability that the precursor was modified up to the intermediate state \(C_i \) at a given time, which is expressed as:

\[
Pr(C_i, t) = \frac{k_{on}}{(k_{on} + k_s)} F_{O_{i-1}}(t) - F_{O_i}(t)
\] \hspace{1cm} (3.4)

\[
Pr(C_r, t) = \left(\frac{k_{on}}{k_{on} + k_s} \right)^r F_{O_{i-1}}(t)
\] \hspace{1cm} (3.5)

These expressions represent the probability that the reaction sequence reached the intermediate state \(C_i \) (or \(C_r \) in the case of (3.5)) and did not proceed at time \(t \), conditioned on the probability that there were no diversion events in none of the previous intermediate steps.

The fact that the precursor molecule \(C_1 \) molecule can only undergo irreversible transformations means that it will ultimately reach the final step or else be diverted somewhere along the sequence. So, if one waits long enough the following asymptotic probabilities are reached:

\[
\lim_{t \to \infty} Pr(C_i, t) = 0
\] \hspace{1cm} (3.6)

\[
\lim_{t \to \infty} Pr(C_r, t) = \left(\frac{k_{on}}{k_{on} + k_s} \right)^r
\] \hspace{1cm} (3.7)

where (3.7) is correctly understood as the maximal probability that the initial \(C_1 \) molecule integrates the final structure in this system.

This expression relating the two reaction rates and the number of reaction steps is the first theoretical result of presented in this dissertation. The fraction \((k_{on}/(k_{on} + k_s))^r \) represents the probability that a given intermediate progressed towards the final step. Since each intermediate can be independently diverted, the final probability is the product of the individual probabilities.

An increase in the diverting rate \(k_s \) leads to a substantial decrease in the probability of reaching the final structure (Fig. 3.3). For instance, a value of \(k_s \) 5 times higher than that of \(k_{on} \) is sufficient to prevent more than 99% precursors to be integrated in the final structure, for all the indicated values of \(r \). The
Figure 3.3: The probability of forming the end product decreases with the length of the sequence and k_s. The curves represent the expression in (3.7) as a function of k_s for a sequence contain r number of steps. The probability of forming the end product decreases exponentially with the size of the sequence. The effect of k_s is not as pronounced for relatively lower values. The value of k_{on} was set to 1 for all cases. Note that the axes are in log-scale.

The parameter r, the number of intermediate steps, is the parameter to which the probability of reaching the final structure is more sensitive, decreasing exponentially with it. Applying this model to cartwheel assembly and taking $r = 9$, k_s value need not even be higher than k_{on} to reduce the probability of forming more than one cartwheel, and consequently, by our assumption, more than one centriole. To give a more practical example, it has been observed that approximately 98-99% of *Drosophila* testes cells contain four centrioles in interphase [41]. Assuming that all of those cells successfully underwent centriole duplication and that a cartwheel was also assembled for each centriole, a k_s value of approximately 0.67 is sufficient to reproduce the results.

These quantitative considerations notwithstanding, the result of this simple probabilistic model can only be interpreted as general trends of parameter dependence. The model is, by construction, limited and oversimplified. For example, it is limited in the sense that it tells us nothing on the effect of a continuous source of the Sas6 dimers, as it is expected from a single-molecule analysis. It is oversimplified because the reaction steps in the assembly of a ninefold cartwheel ring are not necessarily first-order or sequential since Sas6 dimers and different intermediates can combine to form higher-order oligomers, possibly the complete ring, in a single step.

3.4 Including a constant input of molecules

In the previous section we followed the fate of a single individual building block which can form a final product after a number of sequential transformations. We now ask how the time in which the final product forms changes in the presence ($k_s > 0$) or absence ($k_s = 0$) of a diverting mechanism, given that there is a constant influx of molecules. To model this scenario, we retake the reaction system defined in (3.1) and shown in Fig. 3.4.

The purpose here is to compare cartwheel formation times in the presence or absence of a pre-existing cartwheel (diversion enabled vs. diversion disabled, respectively). While it still does not include the more complex oligomerization possibilities mentioned above and corresponding constraints on the
stacking dynamics, the critical aspect is the addition of a continuous influx of molecules.

This reaction system consists exclusively of zero-order or monomolecular reactions, which are a particular case of first-order reactions involving a single reactant and a single product. The increased complexity of this system determines that the simple probabilistic model defined before cannot be applied. Normally, the model used for representing the situation at hand, and more broadly any chemical reaction system, is the chemical master equation. The chemical master equation describes the temporal rate of change in the probability of the system reaching in a given state, depending on its current one. Generally its solution can only be approximated using numerical methods. However in this case, Jahnke and Huisinga [35] provided a general solution which can applied to obtain the desired quantities.

![Figure 3.4: Petri net representation of the reaction sequence scheme with input.](image)

Figure 3.4: Petri net representation of the reaction sequence scheme with input. Representation for \(r = 9 \). The left-most transition represents a reaction which produces molecules of the first species in the sequence. The places and reactions are the same as in Fig. 3.2.

So, first we define a random vector \(\mathbf{X} = (X_1, \ldots, X_{r-1})^\top \in \mathbb{N}^{r-1} \) whose elements represent the molecular numbers of each \(C_i \) species. Note that the vector does not include the final species in the sequence, \(C_r \). This is important for achieving the final solution because in this way the formation of the end product constitutes an exit from the system, in the same way as the diverting reactions, such that coupled with the molecular influx this can be considered as an open system.

We now define

\[
\begin{pmatrix}
X_1 & X_2 & \ldots & X_{r-2} & X_{r-1} \\
X_1 & -(k_{on} + k_s) & 0 & \ldots & 0 \\
X_2 & k_{on} & -(k_{on} + k_s) & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
X_{r-2} & 0 & 0 & \ldots & -(k_{on} + k_s) & 0 \\
X_{r-1} & 0 & 0 & \ldots & k_{on} & -(k_{on} + k_s)
\end{pmatrix}
\]

\[(3.8) \]

\[
\mathbf{b} = \begin{pmatrix}
\sigma & 0 & \ldots & 0 & 0
\end{pmatrix}
\]

\[(3.9) \]

where \(\mathbf{A} \) is a transition rate matrix and \(\mathbf{b} \) is an input vector. Note that the entries of \(\mathbf{A} \) are the rate constants for the reactions originating a molecule of the species in row \(i \) from a molecule of the species in column \(j \). This is unconventional but necessary to allow some algebraic operations.

The steady-state distribution of \(\mathbf{X} \) will be:

\[
\lim_{t \to \infty} \mathbf{P}r(x,t) = \mathcal{P}(x, \lambda(t))
\]

\[(3.10) \]
where \mathcal{P} denotes the product (or multiple) Poisson distribution with expected value λ given by:

$$\lim_{t \to \infty} \hat{\lambda}(t) = \Lambda^{-1}\mathbf{b}^\top$$

(3.11)

with \mathbf{A} and \mathbf{b} defined in (3.8) and (3.9), respectively. The product Poisson distribution is the joint distribution of a number of independent Poisson distributions, which in this case refer to the distribution of each of X_i variables, with the parameter vector λ representing the steady-state expected value and variance of each group of molecules. After substituting for \mathbf{A} and \mathbf{b}, we have:

$$\lambda = \left(\frac{\sigma}{k_{on} + k_s}, \frac{\sigma k_{on}}{(k_{on} + k_s)^2}, \ldots, \frac{\sigma k_{on} r^{-2}}{(k_{on} + k_s)^{r-1}}\right)$$

(3.12)

On a side note, this solution is valid for any initial distribution of C_i molecules. We are interested in knowing the time scales of formation of the end product in the sequence given that the molecules may or may not be diverted and what is the response to molecular influx. However, the solution presented in (3.10) does not include the outcome of the end product. As this system is first-order for all reactions and C_r corresponds to a dead state, we know the average number of C_r molecules will grow linearly with time. Also note that the formation of C_r depends exclusively on the penultimate intermediate state in the sequence, C_{r-1}. Therefore, to formulate the rate of C_r formation, we weigh the expected value of C_{r-1} by the corresponding reaction rate constant, k_{on}, take the time derivative and invert the result, such that the expected time, and variance, of C_r formation θ is given by

$$\theta = \left[\sigma \left(\frac{k_{on}}{k_{on} + k_s}\right)^r\right]^{-1}$$

(3.13)

This is the second theoretical result of this dissertation and is equivalent in practical terms to the solution provided in (3.7). As it can be seen in figure 3.5, θ decreases linearly when only the molecular influx in allowed to vary. The variance of θ follows the same trend. Comparing the two lines, when diversion is allowed by setting k_s to a value of 1, it is sufficient to produce a 100-fold increase in θ. This result suggests that even under a constant influx of molecules, the nine independent steps in which the molecule can be diverted are sufficient to produce a substantial increase in the average time of formation of the end product. When diversion is enabled, θ eventually reaches an asymptote for increasing k_{on}. The value of the asymptote corresponds to the value of θ when the diversion mechanism is disabled. The growth of θ as a function of k_s is symmetrical to that of k_{on}; the average formation time of the end product increases rapidly for higher k_s but is not very sensitive to lower values. Note that formation of the end product when $k_s = 0$ is independent of k_{on} in the considered range of values. It can be observed in (3.13) that this is true for any positive value of k_{on}. So, in these conditions, the maximum speed at which the end product is formed is limited only by the input parameter.

It should be noted that steady-state expected value of the time of end product formation is equal to the result obtained in (3.7) weighed by σ. Therefore, it can be stated that the average behavior of a group of molecules is simply a product of individual behaviors. This also suggests that both theoretical results are consistent with one another.
Figure 3.5: The formation time of the end product is much longer in the presence of a diverting mechanism. The two curves represent situations in which diversion from the main reaction sequence is either enabled ($k_s > 0$) or disabled ($k_s = 0$). θ decreases linearly with σ but is 100-fold higher when diversion is enabled. This shows that diversion can significantly delay the formation time of the end product. The growth of θ as a function of k_{on} and k_s is symmetrical; it converges to a minimum value as k_{on} increases and is not very sensitive to k_s for relatively low values. All parameter values other than the one indicated were set to 1 and we are considering $r = 9$. The curve for $k_s = 0$ is kept in the third plot for reference purposes.
3.5 Modelling second-order oligomerization and stacking

In the previous section we analyzed a simplified linear model of cartwheel assembly. In this section we will include second-order kinetics to better reflect the formation of Sas-6 intermediates and cartwheels through oligomerization. We will also represent stacking explicitly taking into account the presence of the cartwheel and the stoichiometric bounds we postulated on stacked ring formation.

We reuse the C_i notation to represent intermediates composed of i Sas-6 dimers. Influx of single dimers (C_1) occurs at a constant rate σ. C_i species oligomerize with rate constant k_{on}. The product of these reactions should yield a molecule no larger than nine-dimers, which constitutes the complete ring, or the minimal structure which defines an individualized cartwheel. Dissociation of the intermediates into any combination of their constituents occurs with rate constant k_{off}. The reaction which leads to the formation of a complete ring is considered to be irreversible. Stacking of the intermediates on top of a cartwheel occurs with rate constant k_s and is considered to be irreversible as well. This process should be interpreted as ring formation on top of an existing cartwheel, eventually yielding a stack of rings. All cartwheels whose top-most layer is a complete ring will be denoted by C_r whereas others where it is incomplete will be represented by C_i^*, with i indicating the number of dimers in the top-most layer. In practical terms, when an intermediate stacking on a C_i^* molecule would produce a new ring, it is modeled as returning to C_r. We are assuming that there are no steric constraints associated to stacking. For example, if a dimer (C_1) would stack on top of a cartwheel already bound to another dimer (C_1^*), they would form the equivalent to a cartwheel bound to a C_2 molecule (C_2^*). This model can be represented by the following reaction system (Fig. 3.6):

\[
\begin{align*}
* & \stackrel{\sigma}{\longrightarrow} C_1 \\
C_i + C_j & \overset{k_{on}}{\underset{k_{off}}{\longrightarrow}} C_{i+j}, \quad i + j < r \\
C_i + C_j & \overset{k_s}{\longrightarrow} C_r, \quad i + j = r \\
C_i^* + C_j & \overset{k_s}{\longrightarrow} C_{i+j}^*, \quad i + j < r \\
C_i^* + C_j & \overset{k_s}{\longrightarrow} C_r, \quad i + j = r
\end{align*}
\]

where the first line represents constant influx of Sas-6 dimers into the system; the second line represents oligomerization reactions; the third line represents the formation of a complete ring, i.e. a cartwheel; the fourth line represents the irreversible stacking of oligomers on top of an existing cartwheel; and the fifth line represents the formation of a complete ring on top of a cartwheel. Here, i and j represent the dimer content of a given intermediate and r is ring size.

When converted to a mathematical model, this reaction system features two relevant outputs: the number of cartwheels which have formed and the number of stacked rings in those cartwheels, or stack length, in a given time. Regarding the second, it should be stated using C_r and C_r^* is an abuse of notation and prevents us from measuring stack length directly. However, one can easily circumvent this issue by counting the number of times a C_i^* is reconverted into C_r. In this way, one can avoid having to deal with an indeterminate number of chemical species, which is highly convenient since the simulation tool we used is limited in that respect. Since the length of the stacks has no implications for the dynamics of the
Figure 3.6: Petri net representation of the model. The upper sequence of places (red box) depicts all the C_i species, in ascending order of dimer content and the lower line is the equivalent for the C^*_i species (orange box). The rightmost places, at halfway between both lines, represent cartwheels, i.e. complete rings or stacks, (top) and a counter for the total number of stacked rings (bottom). Above the upper line of places are the transitions corresponding to reversible Sas-6 oligomerization. The corresponding set below the lower sequence of places represent the stacking reactions. The leftmost transition, with no input arc, represents dimer production.
model, this abuse of notation is not problematic.

It should be noted that we are making some simplifications regarding the chemical reactions, namely when it comes to ring formation and stacking. In the first case, the formation of a complete ring requires the formation of two chemical bonds in order to circularize the structure. In the second case, stacking implies that the incoming intermediate interacts with the cartwheel as well as with any other molecule already bound to its top ring.

3.5.1 General model dynamics

Having established this, the main questions we can ask to the model is if cartwheel formation can be inhibited in such a way that one and only one structure is formed, and how this depends on stacking. Rephrasing this as a kinetic issue, can the second event of cartwheel formation take much longer, on average, than the first? Moreover, what is the relation of cartwheel number with the length of the stacks? Unlike in the previous model, this one is not easily tractable so we proceeded to analyze it with using numeric simulations. As a starting point, we considered a condition in which all the parameters were set to a value of 1, heretofore referred as the reference condition. We also considered another condition in which σ was set to 5 to test whether cartwheel formation could still be comparatively inhibited even with higher influx. This will be referred to as the high influx condition. We implemented the model in Snoopy and performed 1000 independent simulations with the Gillespie algorithm from an initial condition where no molecules were present and extracted the average number of cartwheels and intermediates at discrete time points, as well as the length of the stacks (Fig. 3.7). The stopping condition for the simulations was $t = 100$.

The results presented in Fig. 3.7A show the time evolution in the average number of cartwheels (i.e. all C_1^r species as well as C_r and intermediates. Due to the initial absence of intermediates there is a delay in cartwheel formation as dimers are being produced and oligomerized into higher-order structures. In the reference condition, the average number of cartwheels rises and causes a drop in the levels of the intermediates as they begin to be diverted towards stacking. After one cartwheel has formed, new ones appear at a much slower rate. In the high influx condition, approximately 2.5 cartwheels form on average in the considered time window but the decrease in their rate of formation and the levels of the intermediates is still visible. These results suggest that in the given time window, it is not necessary to increase the stacking rate in order to ensure the formation of a single cartwheel. Even when the molecular influx is increased five-fold, there is not a linear response in the average number of cartwheels compared to the reference condition. This also corroborates our previous findings that if a large number of steps are required to give rise to a final product, the presence of a diverting mechanism at each step is sufficient to reduce the probability of reaching that outcome. In other words, the ninefold stoichiometry of the cartwheel can determine that a relatively higher stacking rate may not be needed to inhibit formation of new structures.

Regarding the length of the stacks, it can be observed in Fig. 3.7B that the number of stacked rings eventually becomes a linear function of time. The slower elongation rate in the initial moments of the simulations is due to the fact that few cartwheel have formed by then. Comparing the two conditions, when σ is set to a value of 5 the rate of elongation is faster but the response is again non-linear.
This suggests that the production is the limiting factor for the length of the stacks, such that the pool of molecules is divided between all the existing cartwheels. Also, we can conclude that after a certain number of cartwheels have formed, assembly of new structures is very rare and the stacks keep elongating. In the reference condition, this occurs after one has formed on average.

3.5.2 Relation between individual cartwheel formation and elongation

These results are informative regarding the inhibition of cartwheel synthesis. However, since we are interested in cartwheel numbers it is important to look into the times of each individual cartwheel formation event. The cumulative distribution of the times at which a new cartwheel is formed in each individual simulations is shown in Fig. 3.8.

In the reference condition the first cartwheel forms relatively quickly in all simulations. The second cartwheel on the other hand only forms in 0.15% of the simulations in the considered time window. In the high influx scenario, both the first and second cartwheels form on all simulations, albeit the second appearing at a slower rate, and the third is able to form in approximately half of the simulations. The main observation is that both the average time and variance increase for successive cartwheel formation events, such that the overlap between the distributions of each individual event is reduced. A consequence of this is that the diversity of cartwheel numbers at a specific time point is small, as it can be seen in the histograms. These results suggest that the model cannot only explain how cartwheel formation is inhibited but also that there is a certain degree of robustness in forming a certain number of cartwheels. The reference condition satisfies the answer to the main question regarding cartwheel numbers in the sense that one is formed for sure and the occurrence of the second one is a very rare and unlikely event in the considered time interval.

In the same way as we have asked what are the dynamics of each individual formation events, we should also ask how each individual cartwheel elongates. For that, we looked into stack length for the two situations we have studied up to this point. The implementation of the model did not allow us to
Figure 3.8: Formation of successive cartwheels occurs at an increasingly slower rate. The curves represent the cumulative distribution of formation times for the first (light grey), second (grey) and third (dark grey) cartwheels in 1000 simulations. The histograms represent a snapshot of the number of cartwheels present at specific time points (indicated by the vertical dashed lines). The formation time of additional cartwheels is progressively longer on average. The temporal overlap between events is also reduced. Time (t) is in arbitrary units.
Figure 3.9: The average and variance in the number of stacked rings in each cartwheel increases with time. The main plots show the time evolution in the average number of stacked rings for 1000 simulations of the reference and high influx conditions. The cumulative distributions represent the number of rings present at specific time points (indicated by the vertical dashed line). In the reference condition, only the first cartwheel reaches linear growth on average. In the high influx condition both reach linear growth but there is a size difference between the first and second cartwheels. The cumulative distributions show that the variance in the number of stacked rings also increases with time. Time \(t \) is in arbitrary units.

These results allow us to derive some general properties regarding the model. First of all, there is an average difference in length between cartwheels, with the ones that form earlier being longer than the ones that form later. Secondly, the elongation rate is bounded by the input and depends on the number of cartwheels that are present, otherwise the elongation rate of the first cartwheel would not be reduced by
Figure 3.10: Stacking is determinant for inhibiting cartwheel formation. The points represent the logarithm of the formation time of the first (light grey) and second (dark grey) cartwheels in each of the 1000 simulations. The parameter values not indicated in the x-axis were set to 1. \(\sigma \) – the formation time of both cartwheels and the delay between events decreases for higher values of the parameter; \(k_{on} \) – the delay between formation of the first and second cartwheels decreases for higher values but apparently reaches a minimum value; \(k_{off} \) – while higher values increase the delay between the two formation events, the delay is still present for relatively lower values of the parameter; \(k_s \) – increasing the stacking rate substantially increases the formation time of the second cartwheel while lowering it below the reference value decreases it. Note that both axes are in log scale.

the formation of the second one. Third, longer cartwheels on average should have a wider distribution of lengths.

3.5.3 Parameter dependence of cartwheel formation and elongation

The analysis performed on these two scenarios provided insights regarding the general dynamics of the model. However, they are insufficient to understand how each parameter contributes to the output of the model. So, to gain a broader understanding, we asked how cartwheel formation depends individually on each parameter. On more practical terms, what are the formation times of the first and second cartwheels in a range of values for a given parameter? In order to answer this question, we ran 1000 independent simulations up to \(t = 1000 \) and extracted the times at which each cartwheel formed (Fig. 3.10). The values for the parameters in question were chosen to best illustrate the change in the time distributions of both formation events. The remaining parameters were set to a value of 1.

For higher values of \(\sigma \) the formation times of both the first and the second cartwheels are shorter and less disperse. Moreover, both distributions become increasingly similar for higher values of \(\sigma \). There is still an average difference of about one order of magnitude between formation of the first cartwheel and formation of the second one up to \(\sigma = 10 \). For lower values of \(\sigma \) the time of formation of the second cartwheel can be so long that the event does not occur in the simulations. These results are contrary to what was observed in the linear model. While increasing the production rate does accelerate formation of both the first and second cartwheels, the relative difference between the two is not constant and is actually shortened for high \(\sigma \).

For the oligomerization rate \(k_{on} \), the time distributions also become more similar, as it was observed for \(\sigma \). However, the formation time of the first cartwheel seems to depend little on \(k_{on} \) under the chosen parameter values. This was also observed in the linear model when the diverting mechanism
is disabled. The fact that the results for $k_{on} = 25$ and $k_{on} = 50$ are nearly identical indicates there is a limit on how fast cartwheel formation can get. This suggests that in the conditions tested the rate-limiting step in the model is the availability of intermediates, which depends on σ. The same result was observed in the linear model, as the average end product formation times in the presence and absence of a diverting mechanism converged asymptotically, as a function of k_{on}.

When it comes to k_{off} a small increase is sufficient to determine that the second cartwheel only forms in a fraction of the simulations, in the considered time window. Likewise with k_{on} the formation times of the first cartwheel appear to be poorly sensitive to the dissociation rate. On the other hand, when k_{off} is set to 0, which represents a scenario in which oligomerization is irreversible and for other values of the parameter lower than 1 there is still a substantial difference in the formation times of both cartwheels. This suggests k_{off} is not necessary for inhibiting the formation of supernumerary cartwheels.

Increasing k_s also delays the formation time of the second cartwheel. Conversely, decreasing k_s below the reference value has a significant effect in narrowing the difference between formation times of the first and second cartwheels. This confirms that cartwheel formation is highly sensitive to the stacking rate. The results also recapitulate the conclusions drawn for the linear model. Note that by definition k_s has no impact in the first cartwheel formation event; the times are kept in the graph for reference purposes.

It should also be noted that the time lapse between production of the first and second cartwheels can be shorter than the time until formation of the first cartwheel. This can be observed in the graph for higher values of σ and k_{on}. It can be explained by the fact that we considered an initial condition in which no molecules are present, such that there is a delay in cartwheel formation associated with the time necessary for producing sufficient intermediates.

Briefly put, these results show that cartwheel formation is more susceptible to be inhibited than favored; the change in the distribution of formation times is much more pronounced under k_{off} and k_s variation than in the case of k_{on} and σ. Moreover, they confirm that stacking is the main reason why cartwheel formation is inhibited. Lastly, the formation time of the first cartwheel varied only with the production rate.

As cartwheel formation is affected so too should elongation be. So, we sought out to understand how the average number of stacked rings would vary under the same conditions. We used the aforementioned counting method to determine when a ring is added and selected a time point in which elongation had reached linear growth ($t = 50$ was a suitable choice for all cases). Then, we averaged the stacked rings count for the number of cartwheels in each simulation to obtain individual values. The corresponding data are plotted on Fig. 3.11. Note that when studying the dependence on k_{on}, k_{off} and k_s, σ was fixed to a value of 10 in order to make the changes more noticeable.

Higher values of σ lead to longer cartwheels, in spite of more structures also forming. This is in line with previous observations that the model shows a tendency towards cartwheel elongation in detriment of cartwheel formation. Increasing k_{on} on the other hand results in shorter cartwheels. This can be explained by the fact that we have shown that increasing this rate favors cartwheel formation and supports the notion that the influx is limiting respective to stacking, such that the pool of available intermediates is split among existing cartwheels. The inverse can be observed when k_{off} is varied, as the reduction in cartwheel numbers allows the existing ones to elongate further. The extreme example
Figure 3.11: Cartwheel elongation depends on the input and the number of structures that form. The points represent the average length of the cartwheels present in 1000 simulations at $t = 50$. The parameters not indicated in the x-axis were fixed on a value of 1, except for σ which was set to 10. σ – the average number of stacked rings increases with higher molecular influx; k_{on} – the formation of additional cartwheels reduces stack length for higher values; k_{off} – as cartwheel formation is inhibited by higher k_{off}, the length of the stacks increases; k_s – the same trend as k_{off} is observed but even more extreme; lower values are associated with more cartwheels and consequently smaller stacks. Note that both axes are in log scale.

of this same tendency can be observed when k_s is set to higher values. It is also noticeable that in some conditions the observations seem to group together. For instance, this is discernible in the results respective to higher k_{off} or k_s values. These reflect the underlying number of cartwheels present in that group of simulations. In other words, if the simulations contain a more uniform distribution of cartwheel numbers at the considered time point, this will have an impact on stack length with the simulations where more individual cartwheels arose showing shorter stacks and vice-versa for the ones where fewer cartwheels formed. These are more evident in conditions where cartwheel formation is more strongly inhibited, such that the formation of one more structure has a substantial effect on the average number of stacked rings. Given our previous result on the delay of formation times and its consequence on increasing the size difference between cartwheels, the variation in the number of stacked rings for a particular set of parameters can cast insights on what happens at the individual level. In other words, one can infer from the results that higher values of k_{off} and particularly k_s should lead to a larger variance in stack length.

3.5.4 Molecular levels of the intermediates

We have now covered how the two countable outputs of the model – cartwheel formation and elongation – depend on the parameters. It is also expected that the parameters should influence its internal composition, namely the distribution of intermediates. In turn, this distribution should be associated to the rate of cartwheel formation. For example, it is expected that more higher-order structures should be present when formation of additional cartwheels is likelier. In order to confirm this, we extracted the
average number of C_i molecules present at $t = 50$ and calculated the proportion of the total population of intermediates they represented. Despite the levels of the intermediates never reaching a steady-state the proportion is relatively unchanging. The results are plotted in Fig. 3.12.

Dimers were the most abundant species (down to a minimum of 45% for $k_{on} = 50$) for all the tested parameter sets. Contrary to the previous observation on the frequency of higher-order oligomers, increasing the production rate favors cartwheel formation but it does not lead to a higher frequency of the larger intermediates. In fact, there is a progressively larger proportion of dimers for higher σ values. However, these species are more abundant in absolute number when compared to the other scenarios. The results concerning oligomerization rate variation do show this trend, i.e. for higher k_{on} the proportion of larger intermediates increases. Increasing the value of k_{off} and especially k_s has the opposite result in that higher-order oligomers become progressively rarer. In the first case this can be ascribed to the fact that dissociation is favored instead of oligomerization. In the second case it is due to the stacking of almost all the intermediates, such that the molecules remaining are mostly dimers that were produced and not yet diverted. The fact that dimers come up as the most abundant species suggests the critical step for cartwheel formation could be the binding of a C_1 molecule to a C_8 molecule but we did not confirm this.

In summary, the results presented in this section highlight a number of important aspects regarding the model: 1) cartwheel formation is eventually inhibited while the stacks keep elongating at a steady rate; 2) the model can behave in such a way that the first cartwheel forms relatively quickly and then there is a long waiting time for the second one to form; 3) the rate at which the second cartwheel forms depends highly on the stacking rate k_s; 4) the time to the first cartwheel formation event is highly dependent on the production rate σ; 5) the average length of the stacks is bounded by the production rate and depends on the number of cartwheels that form; 6) dimers tend to be the most frequent species but conditions which favor cartwheel formation are associated with an increase in the number of higher-order structures. The key prediction of the model is that cartwheel numbers and stack length are strictly connected. So, regarding the question on controlling cartwheel numbers despite fluctuations in the upstream factors, it should be expected for instance that the system is capable of buffering increases in Plk4 concentration. However, an augmentation in Plk4 levels that is insufficient for eliciting supernumerary cartwheels will nevertheless result in longer stacks.
Figure 3.12: The distribution of intermediates is associated with cartwheel formation. The plots show the relative intermediate numbers at a time where its composition is relatively unchanging. Simulations were conducted using the indicated parameter values and all others set to 1. σ – increasing the parameter leads to a higher proportion of dimers but also higher number of molecules on absolute. k_{on} – as the oligomerization rate is increased, the proportion of higher-order structures increases. k_{off} – increasing the dissociation rate increases the prevalence of smaller intermediates. k_s – higher k_s determine that dimers are increasingly prevalent up to the point they are almost the only species present.
Chapter 4

A method for estimating cartwheel length

In the previous section we characterized the dynamic behavior of a model that predicts a distribution of cartwheel numbers and a distribution of stack lengths, which depend on time. Regarding the first, the experimental readout for testing model predictions is measuring cartwheel formation times. The simplest way to do this is by detecting foci of fluorescently labeled cartwheel proteins such as Sas-6 and STIL/Ana2. Regarding the second, it requires imaging longitudinal sections of the cartwheel using electron microscopy and being able to identify the number of stacked rings [29], which should pose more difficulties.

Therefore, we propose a method which should be able to address some of the challenges in the imaging process: estimating cartwheel length through the distribution of aspect-ratios of randomly generated cross-sections. One would have to purify cartwheels and fix them on a physical medium such that they would orient themselves randomly. Then, by making a single section of the medium one could obtain a large number of cartwheel cross-sections and their contours using image analysis, whose aspect-ratios can then be calculated (Fig. 4.1). Physicists typically use the chord-length distribution of a suspension of particles to estimate there size and shape, which can be obtained using laser diffraction and reflectance methods, among others [42]. Our hypothesis is that length can be estimated using the aspect-ratio distribution. These are also easier to define given that the setting we proposed would yield 2D images.

Before testing whether the distributions of the aspect-ratios of cartwheel sections can be used for estimating stack length, we ask if it is possible to distinguish between two populations of differently sized cartwheels, i.e. stacks with different average number of stacked rings, and if so what is the required sample size.

In order to simulate this experiment, we first designed an algorithm for generating random-cross sections assuming that a cartwheel can be viewed as a right circular cylinder. We considered a diameter of 123 nm and a ring height of 15 nm, based on experimental measurements for bld-12, the *C. reinhardtii* homolog of Sas-6 [24]. The value used for ring height represents the lower bound in the range of natural variability, so it is the worst case scenario when trying to distinguish between distributions containing different numbers of stacked rings. To generate a cross-section, the algorithm proceeds by generating three coordinates x, y and z within the cylinder to determine its origin. The orientation of the cross-section can then be obtained by generating three values for the Euler angles α, β and γ (Fig. 4.2). This yields a cross-section which is circular when it is parallel to the base of the cylinder, rectangular when it is perpendicular, elliptic when it is oblique and semi-elliptic when it does not go through both the top and the base of the cylinder. We ignored tangent sections producing points or straight lines. The aspect-ratio of these shapes can then be calculated by dividing the length of the major axis by that of the minor axis.

To answer whether we could distinguish between different cartwheel length distributions, we generated two study sets by running 1000 simulations of the model described in the previous section and...
Figure 4.1: Cylindrical contour of the cartwheel and possible cross-sections. A - Cylindrical contour of a 5-layered cartwheel model; B - Illustration of possible cross-sections of a cylinder and the resulting 2D shapes. The proposed experiment should yield a distribution of cartwheel sections whose masks would be similar to the shapes presented here. The aspect ratio of these shapes was defined as the length of the major axis (M) over the length of the minor axis (m).

Figure 4.2: Example of a random cross-section obtained with the algorithm. The point P is generated by randomly selecting values for the x, y and z coordinates and defines the origin of a x – y – z plane of reference. The plane is then rotated into a new X – Y – Z frame using the three Euler angles. α is the angle between the x-axis and a vector N which defines the intersection of the rotated frame with the xyz plane. β is the rotation between the z and Z axis. γ is the rotation between N and the y-axis. The section obtained is the represented by the colored ellipse.
retrieving the distribution of stacked rings at \(t = 50 \). Each study set contains two distributions which vary by approximately one stacked ring: approximately 4 vs. 5 rings in one case and 9 vs. 10 in the other. The aspect-ratio distributions were obtained in two steps: first, by randomly selecting a cartwheel of a given length based on its frequency in the distributions and then running the algorithm described above. Finally, we conducted a power analysis by taking 1000 samples from both distributions for each of the study sets and determining the proportion of Kolgomorov-Smirnov test rejections. We repeated this procedure for a range of sample sizes and used a power value of 80% to conclude if a given sample size was sufficient to distinguish between the distributions (Fig. 4.3).

It can be observed that a sample size of 150 is sufficient to cross the 80% threshold in the first study set while a much larger sample size (\(\approx 900 \)) is required in the second. This suggests that the aspect-ratio of the cross-sections does not vary linearly with the number of stacked rings. An explanation for this is that as cartwheels are longer the probability of finding a transverse section also increases. To confirm this and to test whether the aspect-ratio of the cross-sections could be used to estimate stack length, we generated cross-section distributions from cartwheels of known length and used the average aspect-ratio as a measure of those distributions (Fig. 4.4). As a reference, we covered the size variation measured in \(C. \) reinhardtii cartwheels [29]. The results show that average-aspect ratio decreases with some power
of the number of stacked rings and not linearly. This allows us to conclude that at least for cartwheels containing only a few stacked rings the average aspect-ratio of the cross-sections can be used as an estimator of stack length. It has been reported that human cartwheels typically occupy approximately 100 nm of the proximal region of the centriole [3], which would correspond to 6-7 stacked rings, so the method would be adequate to detect variation around this value.

Note that we are assuming an ideal scenario for this experiment regarding cartwheel and cross-section identification. Our proposition implies isolating centrioles, which is possible through ultracentrifugation [43], and/or cartwheels. On the analysis side, it is also assumed that one is able to retrieve the correct contour from all possible cross-sections. Experimental testing is required for assessing its feasibility. Notwithstanding all these issues, our focus was on analyzing the method from a theoretical perspective and we have shown that it is adequate for estimating stack length.

Figure 4.4: Average aspect ratio as a function of cartwheel size. The observations correspond to the average aspect ratio of distributions in heights (in nm) which range from one quarter to double that of the ring diameter, and are also representative of the natural variation found in *Chlamydomonas*. Each stacked ring corresponds to a height of 15 nm.
We begin this section by reviewing the main results presented in this dissertation. The analysis we conducted on the linear model shows that the probability of forming the end product for any given molecule can be very small if it has to overcome a number of intermediate steps, at all of which it can be diverted. When molecular influx is considered, we have shown that there is still a several-fold difference in end product formation times when the diverting mechanism is either enabled or disabled. Likewise, for the second-order model, the stacking mechanism is highly efficient in inhibiting cartwheel formation. After a certain number of cartwheels have formed, depending on the parameter values, the rate at which new ones arise is much slower. The stacks on the other hand keep elongating at a steady rate. The results suggest that there is a trade-off between forming new cartwheels and their elongation, such that if there is an increase in the influx which does not result in a significantly higher number of cartwheels the stacks are expected to be longer. Our analysis also shows that if cartwheel formation is asynchronous then it is expected there is a length difference between the individual stacks. In other words, cartwheels that are produced earlier are longer than the ones produced later on. The distribution of intermediates is also related to cartwheel formation with higher-order oligomers becoming more prevalent in conditions where cartwheel formation is more favorable. Regarding the method we suggested for addressing cartwheel length, our analysis shows that it is theoretically possible to distinguish between two differently-sized cartwheel populations even if the difference is minimal. The sample size for doing so is smaller if the cartwheels are also shorter. We have also shown that the average aspect-ratio can be used as an adequate estimator of cartwheel length for a range of values.

5.1 Model assumptions

The assumption that cartwheel formation and stacking are irreversible determines that each molecule which is produced will end up either as part of a new cartwheel or stacked on top of a preexisting one. However, there is some evidence which supports that cartwheel structure may be more dynamic. In human cells, the cartwheel is only present at the procentriole and disappears in the later stages of centriole development as Sas-6 and STIL are de-localized from the centrosome [44]. The cartwheel in *Chlamydomonas* undergoes length variation across the cell cycle [29]; the same has been reported for *Spermatozopsis* [30]. The cause of these alterations is not known. They may occur due to active degradation of the rings or fluctuations in Sas-6 expression associated with cartwheel instability. On the other hand they can represent exceptions as similar phenomena have not been reported for other systems. In spite of this, we could still ask if adding reversibility to cartwheel formation and stacking would change the results. Doing so is not so straightforward considering our methodology. It would imply adding more parameters to the model to reflect ring and stack dissociation. Also, in practical terms, we would have to consider all different-sized cartwheel species explicitly, which could require...
using a different software tool for conducting simulations.

We imposed no limits on cartwheel numbers nor stack length when defining the model, such that both keep growing with time. However, we considered that stacking does not occur on the cartwheel present at the mother centriole, implying that the process is somehow arrested. There may be spatial constraints on the process or other factors in centriole biogenesis such as the onset of microtubule nucleation or centriolar capping could influence stack elongation. CPAP, a protein which promotes microtubule polymerization by recruiting γ-tubulin, and CP110, a capping protein have been shown to play antagonistic roles in promoting or inhibiting centriole elongation [45]. It is possible that these or other similar proteins also affect cartwheel length. If this is true and their action is concurrent to cartwheel assembly it may be necessary to include them in the model. Nevertheless, when applying the model to a biological scenario, one would have to consider that cartwheel formation typically occurs during G1/S-phase, which should place temporal constraints on the process. Therefore, by considering this time-window, it could also be the case that the stacking mechanism is sufficient to predict both cartwheel numbers and length in spite of other extraneous factors. Ultimately, further work is necessary for addressing all these possibilities.

The fact that we considered that cartwheel assembly depends exclusively on Sas-6 is also a simplification. As we have mentioned, it has been shown that cartwheel formation may depend on other factors aside from Sas-6 self-oligomerization [26, 27]. Even if this is true the model may still prove valid if these are not limiting with respect to Sas-6, as the reactions can be simplified as depending on Sas-6 alone. Though we could have considered Ana2 instead of Sas-6, the same structural role has not been shown for its human homolog STIL nor for any other as far as we know. Moreover, aside from C. elegans the ninefold symmetry of the cartwheel, and more specifically, of the Sas-6 rings, is highly conserved [46]. This makes Sas-6 an interesting candidate if the model is to be generalized to a variety of systems. On the other hand, if any other unknown factor is the limiting one in cartwheel assembly but it retains the ninefold stoichiometry, one would simply have to restate that each of the components in the model represents an i-mer of that species.

Regarding the stacking mechanism, it remains highly hypothetical. Sas-6 has been shown to oligomerize and form stacks in vitro, with varying symmetry [47], but the distance between stacked rings appears to be smaller than in vivo ($\approx 4 \text{ nm}$ vs. $\approx 8 \text{ nm}$). This suggests other proteins can be responsible for organizing the stacks, with a likely candidate being Bld10/Cep135, which binds to the pinheads of the spokes [48]. If Bld10 is not limiting relative to Sas-6, as we have mentioned, the model may still be valid in its current state. Alternatively, if it is limiting, Bld10 also exhibits ninefold organization [16], so the model can perhaps be adjusted to this context. At the moment, quantitative analyses are inconclusive as to which one is limiting [10]. A more vehement issue arises regarding the stacks forming by successive addition of intermediates. It could be that rings are formed elsewhere and only afterwards piled on top of the cartwheel. In fact, some have suggested that the centriolar lumen acts as the template for cartwheel ring formation, with the structure then being transported to its typical location near the wall of the mother centriole. This claim is based upon the existence of a Sas-6 focus inside the centriolar lumen [26]. However, the evidence is not conclusive. If cartwheels are indeed formed in the centriolar lumen, then there would have to be a transport mechanism which is of yet to be identified. Experimental evidence of the assembly mechanism could be obtained using electron microscopy. For example,
considering these two hypotheses, in principle one should be able to observe a ring in the process of binding to a stack, or a ring being formed on top of it. To the best of our knowledge, this is yet to be shown. What is definitely known is that the stacks occur \textit{in vivo}. Therefore, without further information, the assumption that they are formed by progressively stacking intermediates on top of the cartwheel is a possible explanation on how stacking can happen.

If we had considered steric constraints in the stacking mechanism its efficiency in inhibiting cartwheel formation could be reduced. In other words, the ability of a cartwheel to divert intermediates could be limited. On the other hand, this opens up a lot of considerations. There can be also steric constraints on the binding of intermediates, which could affect their oligomerization properties. Ultimately, including steric constraints would imply modeling molecular structure, which would take an entirely different approach.

Finally, we considered stacking to be unidirectional mainly because the cartwheel typically forms orthogonally to the mother centriole. Also, there is some evidence that its components may be chiral, but it is not known if this property arises from Sas-6 or the pinhead forming Bld10 [16]. It has also been proposed that cartwheel formation may be bi-directional in bryophytes [16]. Nevertheless, judging from our results this would only determine that stacking would be even more efficient in inhibiting formation of more than one cartwheel.

5.2 Approach on model analysis

The mathematical analysis we performed on the linear model allowed us to fully characterize its dynamic behavior. The expressions we have derived not only describe the equilibrium condition but also the temporal evolution of the system. In this way, we were able to quantify how the formation of the end product depends on the parameters. The main shortcoming of this system is that it does not allow us to explicitly analyze how cartwheel formation reduces the formation rate of the next one, i.e. we are only able to distinguish between absence and presence of a diverting mechanism but not a scenario where there is a transition between a state in which there is no diversion but it is eventually enabled as the end product is formed. Additionally, it does not take cartwheel elongation into account. Nevertheless, it allowed us to understand the importance of the length of the sequence and the diverting mechanism in inhibiting end product formation, and these features are retained in the more complex model.

On the other hand, the model which considers second-order oligomerization and stacking is not so easily tractable and it does not reach a steady-state. The analysis we conducted through simulations limited us to key sets of parameter values in order to illustrate their influence on cartwheel formation and elongation and we could only obtain approximate results. While this is sufficient to draw general conclusions regarding model dynamics it is not an ideal scenario, especially in the possibility of fitting the model to experimental results, though in this case methods such as Approximate Bayesian Computation [49] can be employed. An alternative to this simulation-oriented approach could be through the use of methods such as finite-state projection [50] which can provide approximate solutions for models which cannot be solved analytically. Nevertheless, running simulations of this model does not come with a high enough computational cost which would deem other strategies to be strictly necessary. Since we would not be able to obtain analytical solutions this approach was considered to be the most effective.
for the purposes of this dissertation, even more so given that the Gillespie algorithm is implemented in Snoopy.

Finally, we also chose to look at the parameters in relative terms. The dissociation constants for the Sas-6 N-N terminal interaction have been experimentally measured [24] and we could have used to supply values for the oligomerization parameters. Likewise, experimental measurements of cellular or centrosomal Sas-6 concentrations [25] could be used with respect to the production rate. Regarding the first, we could not have a similar guess for the other parameters neither we could be sure that those measurements accurately depict what occurs in vivo, as they were obtained in vitro using truncated Sas-6 N-termini. Regarding the second, using a production reaction occurring at exponentially distributed times rather than a constant pool of molecules allowed us to address stochasticity in the source directly, which was one of the main premisses of the problem we sought to answer. Nevertheless, a physical scale for the parameters should be taken into account in the future.

5.3 Perspectives on centriole biogenesis

The main conclusion of this dissertation is that the proposed stacking mechanism of cartwheel assembly can inhibit the formation of more than one structure and is highly efficient in doing so. By extension, this mechanism can also explain how centriole numbers are strictly controlled by the cell provided that the cartwheel is indeed the key step which establishes a centriole. Our depiction of the stacking mechanism also enables cartwheel elongation by the successive addition of stacked rings. Thus, there is an interplay between the number of cartwheels and the length of the stack.

Testing the model implies measuring cartwheel formation and elongation rates, or alternatively cartwheel numbers and stack length. The critical consideration here is that one is able to experimentally control protein levels. More specifically, manipulating Sas-6 concentration by directly affecting its expression should correspondingly have implications for the input parameter, and likewise for Plk4 given our assumption that Sas-6 levels are a monotonously increasing function of its concentration. This can provide an experimental setting in which the model can be tested. For example, Sas-6 overexpression should be interpreted as a higher production rate. This places a constraint on model dynamics which in association with a given time-window can allow one to infer properties of the assembly process. On more practical terms, this means fitting the model to different sets of experimental data and estimating values for the parameters. Ascribing physical meaning to the parameters can suggest whether or not other factors should be at play. For instance, if the model predicts much stronger oligomerization dynamics than the ones measured in vitro it supports the notion that other factors may contribute to cartwheel assembly.

The fact that the model predicts cartwheel numbers and length widens the realm of possibilities. For example, it could be that the model is able to correctly predict cartwheel numbers but not stack length or the other way around. This would suggest other factors to be at play. In summary, by studying the conditions in which the model succeeds or fails in predicting experimental data can assist in unraveling more of the centriolar assembly process. Failure in producing accurate predictions can be a result of upstream factors or insufficiency of the oligomerization/stacking dynamics. Further work should be done to study all these conditions and their implications but that is beyond the scope of this dissertation.
For now, we have established what is the outcome of the model in different conditions which in its turn should facilitate the interpretation of these analyses.

It should also be noted that despite not having considered spatial information when defining the model, the formation and elongation of a stack implies the existence of a physical structure which concentrates Sas-6. Therefore, if one is to fluorescently label Sas-6, or possibly other cartwheel markers, and is able to link a focus of these proteins to a certain number of cartwheels, quantifying fluorescence intensities can also be used as a readout for the model. For example, if a series Sas-6 foci correspond to single cartwheels, different fluorescence intensities should be associated to different protein concentrations, which in turn could indicate stacks of varying length. This requires enough imaging resolution to be able to accurately distinguish the foci and it also implies that all the proteins are indeed part of the stack. We did not delve into the technical aspects but this is theoretically possible.

Despite having discussed the model in the light of centriole duplication and formation of supernumerary centrioles which can arise from artificial Plk4 overexpression [9] it does not rule by definition natural de novo biogenesis. This process is characteristic of terminally differentiated multiciliated cells, where multiple centrioles are synthesized to form the basal bodies of the cilia [4]. However, in a setting which allows for both supernumerary centrioles to arise at the centrosome and also de novo biogenesis it is most likely that spatial resolution is necessary to distinguish the two. Otherwise, the model can still be applied to predict centriole numbers.

As we have mentioned, the stacking mechanism provides an explanation on how the cartwheels form as a multi-layered structure but we do not claim this process depends on Sas-6 alone. A recently published article concludes that Sas-6 self-oligomerization is insufficient to ensure efficient cartwheel formation and that the presence of a cylindrical scaffold, based on an electron-dense region found in *Trichonympha* cartwheels called the cartwheel inner densities, can not only account for this but also determines that Sas-6 rings assemble orthogonally to a surface where the scaffold is placed [51]. However, the authors acknowledge that Sas-6 oligomerization may be assisted by post-translational modifications or other centriolar components. Moreover, when it comes to cartwheel numbers their results imply the existence of one scaffold per cartwheel. As they did not explore the biochemical nature of these scaffolds it is not clear what they represent in terms of the centriolar biogenetic process. Either way, if Sas-6 self-oligomerization is indeed insufficient to explain how rings are formed, that is not inconsistent with the model we have proposed. We simply assumed Sas-6 was limiting but other processes could be involved. However, if a scaffold is required for cartwheel assembly, then the number of cartwheels could be limited by the number of scaffolds and not any type of assembly dynamics.

We have shown that the suggested method for estimating cartwheel size based on the aspect-ratio distribution of random cross-sections is theoretically adequate. On practical terms it is highly dependent on the ability to extract the masks one would expect from cylindrical sections out of cartwheel sections. Since the cartwheel is not exactly shaped like a cylinder this may not be trivial, especially if a given section would capture only a small portion of the cartwheel. Centrioles can be purified through ultra-centrifugation [43] but it may be necessary to isolate the cartwheels. All these considerations determine that experimental testing of this method is ultimately necessary. We cannot dismiss the fact that the method may prove insufficient if cartwheels contain a significantly large number of stacked rings, more precisely over 10-12, which can be expected in the very least for *Trichonympha* cartwheels [28].
Nevertheless, there are other measures which come from this method and could be used to complement length estimation. For example, calculating the aspect ratios of cross-section implies measuring its major and minor axes and the maximum length of the major axis of a cross-section depends on cartwheel length. We did not explore these alternative measures but they are a consequence of the analysis method and therefore readily available. On the other hand, the applicability of this method can extend beyond cartwheel length estimation, in principle. Centrioles, for instance, are cylindrical in shape and can be purified [43]. Measuring centriole length through common electron microscopy techniques [52] can be technically demanding. The method we have suggested should provide a simpler alternative for reaching the same goal.
Chapter 6

Concluding remarks

We proposed a fundamental principle which can explain how the cell controls cartwheel numbers and consequently centriole numbers. Our theoretical analysis of the linear model shows that the length of the sequence of intermediates in the presence of a diverting mechanism significantly reduces the probability of forming the end product. It is also shown that even under a constant influx of molecules the diverting mechanism can account for a substantial difference in the rate of end product formation. The results for the second-order model show that the postulated stacking mechanism is highly efficient in ensuring that one and only one cartwheel forms in a given time interval. Moreover, the diversity in cartwheels numbers at a given time is reduced, suggesting it also to be robust. By determining the formation times for the first and second cartwheels we showed that a slight increase in the stacking rate can have substantial consequences in slowing down the assembly of supernumerary cartwheels. We also confirm that the input of the system is critical for its outcome but stacking can still account for a considerable degree of variation in the production rate. In our analysis, we depict a number of scenarios which reflect both internal changes in the composition of the system we have modeled but also on its outcome, which allowed us to derive some of the biochemical implications which could be at play at a real system.

The main consequence of our hypothesis is that cartwheels have a length distribution which is associated to its numbers. Our results suggest that if cartwheel production is asynchronous then it is also expected that individual cartwheels show a length difference in the same system. Experimental data in cartwheel length variability is scarce, but our results show that it can be a consequence of the assembly process. If our hypothesis is correct, there may also be some undisclosed physiological meaning regarding cartwheel length.

Additionally, we suggested some strategies which can be used to test our quantitative predictions. Testing the model is predicated on the ability to correlate both cartwheel/centriole numbers and stack length, and also the underlying biochemical mechanisms. We have proposed an experiment which circumvents some of the technical issues in estimating cartwheel length. Our results show that even in extreme cases in which length differences between two populations are minimal they can be detected by comparing the aspect ratio distributions of random cross-sections.

The work developed over the course of this dissertation should cast new insights on centriole biogenesis and it raises the possibility that cartwheel stacks may have a length distribution. Further work should focus on experimentally addressing model predictions and fitting in order to uncover more of the centriole biogenetic process.
Bibliography

Appendices
Methods

In this section we provide a short description of the Petri net formalism and of the Gillespie algorithm, used for conducting model simulations. Additionally, we describe the methods used for confirming the expressions derived for the linear model (Section 3.2).

Petri nets

Petri nets are a formalism designed by Carl Adam Petri which is often used to visually represent chemically reacting systems. They can be defined by a set of places, which depict chemical species in the system and are represented by circles, and a set of transitions, which correspond to the reactions and are represented by boxes. Transitions have inputs and outputs which are represented by arcs, or edges, which in the first case connect a place to a transition and in the second a transition to a place. In other words, they indicate which of the participating species in a given reaction act as reactants or as products. Arcs carry weights which indicate the number of tokens consumed or produced by a given transition. The last static component in a Petri net are tokens, which represent individual entities of a given species (i.e. molecules). A certain configuration of these tokens in the Petri net constitutes a marking, or state, in the system \[37\]. Coupling Petri net visualization methods with a simulation algorithm, the system can be evaluated dynamically. Both these features are included in the Snoopy software \[38\].

We used Petri nets for representing the model and the accessory simplifications. Despite the considerably large number of species and reactions we are considering in the model, since we are considering a small set of reaction categories (production, oligomerization, dissociation and stacking), using a Petri net allows us to provide a visual aid for all the possible combinations of species. For the simplifications, we can clearly illustrate a chain of successive events.

Gillespie algorithm

The Gillespie algorithm, or stochastic simulation algorithm, was designed by Daniel Gillespie to numerically simulate reaction systems, mainly as a solution to cases where the time-evolution of a given system could not be resolved analytically. The algorithm is mathematically consistent with the stochastic formulation of chemical kinetics, which represents chemically reacting systems as Markov models. It proceeds by determining the probability that each of the enabled reactions may occur given the current state of the system and randomly selecting one. Then, it calculates the time at which said reaction occurs based on an exponential distribution parametrized by the corresponding reaction rate constant. This procedure is repeated for a given number of steps or time interval (in the case of the Snoopy-implemented version) \[36\].

All simulations of the model were performed using the Gillespie algorithm. Stochastic simulation of the systems depicted in the simplifications was also used to confirm that the analytical derivations for the linear model. For extracting formation times and the number of stacked rings, we used the single trace export function of Snoopy, which allows us to track the result of each simulation separately.
Mathematical and statistical analysis

The procedure for deriving the mathematical solution to the simplified system in 3.1 was based on a paper by León et al. [53]. We compared the theoretical expressions in (3.3) with data simulated by Snoopy for the respective system. For a sample size of 1000, the Kolmogorov-Smirnov test was non-significant for all cases (p-value > 0.05), so that we can conclude that the empirical and reference distributions are not different. The same principle was applied in the case of (3.10). Since in this case we were comparing categorical data, arising from different token counts, we used the Pearson χ^2 goodness-of-fit test and obtained identical results (p-value > 0.05 for all tests). All symbolic calculations were performed using Wolfram Mathematica. Processing of the Snoopy raw output files was performed with Python. R was used for obtaining summary statistics and for conducting hypothesis tests. The latter were re-checked with Wolfram Mathematica.
Glossary

- **Cartwheel**: Any Sas-6 structure containing at least one Sas-6 ring (i.e. rings and stacks).

- **(Complete) Ring**: Planar arrangement of nine Sas-6 dimers, formed by oligomerization. Minimal structure which defines a cartwheel.

- **Dissociation**: Reverse reaction to oligomerization, producing two smaller sized intermediates. The dissociation rate is denoted by k_{off}.

- **(Homo) Dimer**: The fundamental Sas-6 species considered in the model. Molecules are produced in dimer form.

- **Influx/Production**: Sas-6 dimer production into the system. A simplification of the whole process of gene expression, translation, processing and Sas-6 dimerization. The production rate is denoted by σ.

- **Intermediate**: Any of the Sas-6 species containing up to eight dimers which can either form a complete ring (cartwheel) or be stacked on top of an existing one.

- **Oligomerization**: Any reaction which combines two intermediates, yielding a product containing the number of dimers in the reactants, up to nine (size of a complete ring). Alternatively, the set of reactions which ultimately result in cartwheel formation. The oligomerization rate is denoted by k_{on}.

- **Stack**: Any number of rings stacked on top of each other. A new ring may form on top of the structure through building block stacking.

- **Stacking**: Reaction which binds intermediates to cartwheels, in a way which allows for a ring to form stacked on top of the cartwheel. The stacking rate is denoted by k_s.