Life and Death at the Peștera cu Oase
Life and Death at the Peştera cu Oase

A Setting for Modern Human Emergence in Europe

Edited by Erik Trinkaus, Silviu Constantin, João Zilhão
Contents

Contributors xi

I. INTRODUCTION AND BACKGROUND 1
 1. Introduction (Erik Trinkaus, Silviu Constantin, João Zilhão) 3
 2. Exploration and Documentation of the Peștera cu Oase (Ștefan Milota, Mircea Gherase, Laurențiu Sarcina, Ricardo Rodrigo, Oana Moldovan, Erik Trinkaus, Silviu Constantin, João Zilhão) 5
 3. Problems, Approaches and Fieldwork: 2004–2005 (João Zilhão, Ștefan Milota, Ricardo Rodrigo, Silviu Constantin, Erik Trinkaus) 16

II. THE CAVE AND ITS CONTENTS 31
 4. The Karst Geology of the Ponor-Plopa System in Its Regional Context (Silviu Constantin) 33
 5. The Ponor-Plopa Cave System: Description, Sediments, and Genesis (Silviu Constantin, Cristian-Mihai Munteanu, Ștefan Milota, Laurențiu Sarcina, Mircea Gherase, Ricardo Rodrigo, João Zilhão) 41
 6. Uranium-Series Dating on Speleothems from the Ponor-Plopa Cave System (Silviu Constantin, Stein-Erik Lauritzen) 56
 7. Electron Spin Resonance Dating of Vertebrate Remains from the Peștera cu Oase (Rainer Grün, Tegan Kelly, Maxime Aubert) 73
 8. Radiocarbon Dating of the Peștera cu Oase Faunal Remains (Thomas Higham, Eva Maria Wild) 77
 9. Rock Magnetic Data of Late Pleistocene Sediments from the Peștera cu Oase and Their Paleoclimatic Significance (Cristian Panaiotu, Silviu Constantin, Cătălin Petrea, Viorel Horoi, Cristina-Emilia Panaiotu) 86
 10. The Distributions of Finds and Features (João Zilhão, Ricardo Rodrigo, Hélène Rougier, Ștefan Milota) 100
CONTENTS

III. THE CAVE BEARS 125
11. Cave Bear Paleontology and Paleobiology at the Peștera cu Oase:
 Fossil Population Structure and Size Variability
 (Martina Pacher, Jérôme Quilès) 127
12. Taphonomic Analysis of the Cave Bear Remains from the Peștera cu Oase
 (Martina Pacher, Jérôme Quilès) 147
13. An Ancient DNA Perspective on the Cave Bears from the Peștera cu Oase
 (Mathias Stiller, Michael Hofreiter) 159

IV. THE OTHER VERTEBRATES 165
14. Hyena, Wolves, and Foxes from the Peștera cu Oase (Emil Știucă, Alexandru Petculescu) 167
15. Small Mammal Remains from the Peștera cu Oase (Alexandru Petculescu) 185
16. The Ungulates from the Peștera cu Oase (Simon A. Parfitt, Adrian M. Lister) 189
17. Taphonomic Considerations of the Non-Ursid Vertebrate Remains
 (Érik Trinkaus, Martina Pacher) 204
18. Stable Isotopes and Dietary Patterns of the Faunal Species from the Peștera cu Oase
 (Érik Trinkaus, Michael P. Richards) 211

V. THE HUMAN REMAINS 227
19. Radiocarbon Dating of the Peștera cu Oase Human Remains (Érik Trinkaus) 229
20. The Human Mandible from the Peștera cu Oase, Oase 1 (Érik Trinkaus, Hélène Rougier) 234
21. The Human Cranium from the Peștera cu Oase, Oase 2 (Hélène Rougier, Érik Trinkaus) 257
22. Frontal Bone Contours of the Oase 2 Cranium (Sheela Athreya, Hélène Rougier) 321
23. The Internal Cranial Morphology of
 Oase 2 (Marcia Ponce de León, Christoph
 P. E. Zollikofer) 332
24. The Dental and Alveolar Remains of Oase 1 and 2 (Érik Trinkaus,
 Shara E. Bailey, Hélène Rougier) 348
25. The Oase 1 Human Stable Isotopes (Michael P. Richards, Érik Trinkaus) 375

VI. DISCUSSION 383
26. The Paleoenvironmental Context of the Peștera cu Oase (Silviu Constantin,
 João Zilhão, Érik Trinkaus) 385
27. Paleoenthropological Implications of the Peștera cu Oase and Its Contents
 (Érik Trinkaus, João Zilhão) 389

VII. REFERENCES 401
28. References 403
Contributors

Sheela Athreya
Department of Anthropology, 234 Anthropology Building, 4352 Texas A&M University, College Station, TX 77843, USA

Maxime Aubert
Research School of Earth Sciences, Australian National University, Canberra ACT 0200, Australia

Shara E. Bailey
Department Anthropology, New York University, 25 Waverly Place, New York NY 10003, USA

Silviu Constantin
Institutul de Speologie “Emil Racoviță,” Department of Geospeleology and Paleontology, str. Frumoasă 31, 010986 Bucharest, Romania

Mircea Gherase

Rainer Grün
Research School of Earth Sciences, Australian National University, Canberra ACT 0200, Australia

Thomas Higham
Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK

Michael Hofreiter
Evolutionary Biology and Ecology, Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK

Viorel Horoi
Département des Sciences de la Terre et de l’Atmosphère, Université de Québec à Montréal, Montréal, Québec H3C 3P8, Canada; and Institutul de Speologie “Emil Racoviță,” str. Frumoasă 31, 010986 Bucharest, Romania

Tegan Kelly
Research School of Earth Sciences, Australian National University, Canberra ACT 0200, Australia

Stein-Erik Lauritzen
Department of Earth Sciences, Bergen University, Allegaten 41, N-5007, Bergen, Norway

Adrian M. Lister
Department of Palaeontology, Natural History Museum, Cromwell Road, London SW7 5BD, UK

Ștefan Milota

Oana Moldovan
Institutul de Speologie “Emil Racoviță,” Cluj Branch, Clinicilor 5, P.O. Box 58, 400006 Cluj-Napoca, Romania

Cristian-Mihai Munteanu
Institutul de Speologie “Emil Racoviță,” Calea 13 Septembrie, nr. 13, 050711 Bucharest, Romania

Martina Pacher
Institut für Paläontologie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
Contributors

Cristian Panaiotu
Bucharest University, Paleomagnetism Laboratory,
Bălcescu 1, 010041 Bucharest, Romania

Cristina-Emilia Panaiotu
Bucharest University, Paleomagnetism Laboratory,
Bălcescu 1, 010041 Bucharest, Romania

Simon A. Parfitt
Department of Palaeontology, Natural History Museum,
Cromwell Road, London SW7 5BD, UK; and Institute
of Archaeology, University College London, 31–34
Gordon Square, London WC1H 0PY, UK

Alexandru Petculescu
Institutul de Speologie “Emil Racoviță,” str. Frumoasă 31,
010986 Bucharest, Romania

Cătălin Petrea
Institutul de Speologie “Emil Racoviță,” str. Frumoasă 31,
010986 Bucharest, Romania

Marcia Ponce de León
Anthropologie, Y42 K 22, Winterthurerstrasse 190, 8057
Zürich, Switzerland

Jérôme Quilès
Unité Toulousaine d’Archéologie et d’Histoire (UMR 5608), Maison de la Recherche, Université Toulouse
Le Mirail, 5 allées Antonio Machado, 31058 Toulouse
cédex 9, France

Michael P. Richards
Department of Anthropology, University of British
Columbia, Vancouver, B.C. V6T 1Z1, Canada; and
Department of Human Evolution, Max-Planck
Institute for Evolutionary Anthropology, Deutscher
Platz 6, 04103, Leipzig, Germany

Ricardo Rodrigo
Sociedade Torrejana de Espeleologia e Arqueologia,
Quinta da Lezíria, 2350 Torres Novas, Portugal

Hélène Rougier
Department of Anthropology, California State University
Northridge, 18111 Nordhoff St., Northridge, CA 91330,
USA

Laurenţiu Sarcină
Timișoara, Romania

Mathias Stiller
Department of Ecology and Evolutionary Biology,
University of California Santa Cruz, 1156 High Street,
Santa Cruz, CA 95064, USA

Evelyn Ţiucă
Institutul de Speologie “Emil Racoviță,” str. Frumoasă 31,
010986 Bucharest, Romania

Erik Trinkaus
Department of Anthropology, Washington University,
Saint Louis MO 63130, USA

Eva Wild
Institut für Isotopenforschung und Kernphysik der
Universität Wien, VERA-Laboratorium, Waehringer
Strasse 17, 1090 Wien, Austria

João Zilhão
Universitat de Barcelona/ICREA, Departament de
Prehistòria, Historia Antiga i Arqueologia, Facultat de
Geografia i Història, Montalegre 6, 08001 Barcelona, Spain

Christoph P.E. Zollikofer
Anthropologie, Y42 K 22, Winterthurerstrasse 190, 8057
Zürich, Switzerland
Life and Death at the Peștera cu Oase
Part Two

The Cave and Its Contents

Editors’ Note. Throughout the volume, the radiometric dates provided are indicated as being “Before Present” (BP), with a distinction made for the radiocarbon dates between radiocarbon years (14C BP) and calendar years (cal BP). However, labeling dates in “years BP” is normally used solely for radiocarbon determinations, in which the “present” is A.D. 1950. For other dates, including the Uranium-series and electron spin resonance (ESR) ones provided in this volume, “before present” or “years ago” is in terms of the year in which the measurement was made. Given the magnitude of statistical uncertainties in almost all of the radiometric dates here (all except the recent goat metapodial), this technical distinction should make little difference in the evaluation of these ages.
The Distributions of Finds and Features

João Zilhão, Ricardo Rodrigo, Hélène Rougier, and Ștefan Milota

Introduction

The research strategy underpinning the excavation of the Panta Strămoșilor and the methodology followed in the undertaking of this task are outlined and discussed in Chapter 3. Here, we (1) detail the stratigraphy observed in the excavated area and discuss the mise en place of the cave’s sedimentary fill, (2) derive the corresponding implications for the interpretation of the finds and features observed on the surface of the different areas of the Peștera cu Oase system, whether excavated (Panta Strămoșilor) or not (Galeria celor Trei Cranii, Galeria Lungă, Sala Mandibulei, and Galeria Culcușurilor), and (3) diagnose these surficial finds and features as a complex palimpsest with an extended formation history, for which we propose a diachronic model.

The Stratigraphy of the Panta Strămoșilor

From top to bottom, three stratigraphic units—Surface, Level 1, and Level 2—were recognized during the excavation of the Panta Strămoșilor. Their differentiation is apparent in the ~90 cm thick profile exposed at the end of the excavation work (Figure 10.1), whence the samples for the rock-magnetic analyses discussed in Chapter 9 were collected. In the field, these units were defined as shown in Figures 10.2 to 10.4.

Surface

This unit consists of an ensemble of visible finds loose or exposed, on the surface of the deposit (Figures 10.2a–10.2f), including, in the area of units O-P/35–36 of the grid, those enveloped in a film of clayey silts, <1 cm thick, accumulated between that surface and the cave wall (Figures 10.3c and 10.4a–d).

Level 1

This unit corresponds to a 5 to 30 cm thick bed of bones, primarily of cave bear, intertwined in a very dense, confused mass and mixed with unweathered rocks (broken speleothems and large limestone blocks) fallen from the adjacent cave walls (Figure 10.3d). The interstitial spaces were filled with a fine, gritty cave earth matrix. In addition, in the area of grid units N35 and O/N34A+B, flowstone patches capped the deposit, which also featured significant expanses of subsurface carbonate induration caused by dripping.

Level 2

This unit is a sandy- to coarse-grained deposit, including significant amounts of pebbles and rounded cobbles of limestone and other rocks as well as rolled speleothems (Figure 10.3e–10.3f). It is rich in bear bones, mostly of small size (e.g., isolated teeth, phalanges, or unfused long bones of fetal and very young individuals; Chapter 12), amounting to as much as 23% by volume. Subunits of different texture (e.g., homogeneous lenses of clay, bars of coarse sands and gravel) were identified over the excavated thickness (~65 cm in the mid-N37 profile; Figure 10.3a). Bulkier material (e.g., a complete cranium of an adult bear) was present toward its base, reached in quadrants N36B and N37C+D. The diversity of this deposit suggests an extended, modulated accumulation process, as does
The Distributions of Finds and Features

the fact that Level 2 sediments covered the well-developed stalactites and draperies adhering to the buried cave wall (Figures 10.3b and 10.4a). Combined with the topography of the latter, these observations indicate that the excavation affected but the “tip of an iceberg” with considerable time depth and a total thickness in the range of multiple meters.

Discussion

In Level 1 (as on the Surface), the bones were white when dry, often severely leached, with a chalky texture apparent in fresh breaks. The amount of leaching underwent by the Level 1 contents was readily apparent during excavation. For instance, limestone blocks, when removed, often left a “bed” covered by a calcium carbonate film, while a significant amount of bone debris existed not only in the Surface unit but also in Level 1. Although, to a small extent, this debris related to trampling caused by the (limited) circulation of cavers prior to the beginning of the excavation (Figures 10.2b and 10.2f), it mostly resulted from genuine in situ degradation.

In Level 2, bones were orange-to-brown in color, variably displayed minor smoothing of anatomical details, and, chemically, were very well preserved. In association with the clay lenses interspersed in the deposit, the external

Figure 10.1 The stratigraphic profile recorded July 25, 2005, along the middle of the 37 row of the Panta Strămoșilor excavation grid (reproduction of the field drawing).
Figure 10.2 Detail views of the surface of the bone jumble in the more downslope grid units of the Panta Strămoșilor in early July 2004, prior to excavation; the arrows point upslope, along the direction of the y-axis of the grid. (a) N32, (b) N33 (note the breakage caused by trampling). (c) M33 (note, fallen in the foreground, the composite PPL6 speleothem). (d) O33 (note the subsidence “tub” and the vertically placed bear bones, including a femur broken accidentally, prior to excavation). (e) O34 (the original position of the Oase 2 face, removed in 2003, is indicated by the triangle). (f) N34 (note the breakage caused by trampling).
The Distributions of Finds and Features

Figure 10.3 Aspects of the stratigraphy of the Panta Strămoșiilor fill. (a) The stratigraphic profile along the middle of the 37 row of the grid at the end of the excavation, July 26, 2005 (the dashed line indicates the separation between Levels 1 and 2; compare with Figure 10.1). (b) The O35–36 gully and its fill as seen against profiles along the middle of the 36 row (in the foreground) and the middle of the 37 row (in the background) of the excavation grid (note, in the foreground, how, in row 36 of the grid, Level 2 was exposed as surface along the right wall of the passage, while, against the left wall, its truncated surface, represented by the dashed line, was overlain by a Level 1 deposit that featured voids containing loose bones with a Level 1 appearance). (c) View, looking upslope, over the surface of units O34–35 of the grid (note the clay film sealing the surface of the Panta Strămoșiilor, which was thickest in this area, against the left side of the passage). (d) Detail of the excavation of the Level 1 bone jumble in O34 (note the entanglement of the bones and that, along the edges of the O33 subsidence “tub,” the surface of Level 2 has already been exposed; under O34.76, the calcite-covered, complete coxal of an adult bear, the proximal end of O34.416, the complete left humerus of an adult bear, can be seen outcropping from the Level 2 deposit with an inclination diametrically opposed to that presented by the Level 1 material). (e) View, looking upslope, of grid unit N33 with the surface of Level 2 exposed (the overall stratigraphy of the Panta Strămoșiilor can be appreciated at the interface with N34, where, under the loose surface material, the dense Level 1 bone jumble is well apparent; the arrow indicates an area where the Level 1 deposit was carbonate-cemented). (f) Detail of the Level 2 deposit as exposed along the interface between grid units N32 and N33 in early July 2004.
coloration tended to white or gray, but the tissue remained very solid, with no leaching. The excellent preservation of bone over the entire thickness of this level was confirmed by the high collagen content of the radiocarbon and stable isotope samples collected therein and the successful extraction of ancient DNA (aDNA) from its cave bear remains (Chapters 8, 13, and 18). The contrast in preservation suggests that the Level 2 bones underwent rapid burial, whereas an extended period of preburial exposure to surface weathering affected the Surface and Level 1 bones.

Along the wall, in the O and P columns of the grid, Level 1 filled a range of negative features. In units N32A+C and O-P/35–36 these were mainly gullies. In grid unit O33, however, a cylindrical tub with subsurface drainage featured (1) walls lined with large bear bones in vertical position, and (2) a Level 1 fill containing several fragments of the Oase 2 cranium (Figure 10.4d). These features formed postdepositionally as a result of erosion, subsidence, and wall effect (or combinations of these processes). In units O35C, O36A+C and N36A, the Surface and Level 1 finds corresponded to material infiltrated laterally and vertically into the narrow empty spaces between the top of Level 2 and the encasing rock, the contours of which were very irregular because of speleothem growth (Figure 10.4a). Their overall similarity in appearance to Level 1 remains (in terms of color, size, and preservation) clearly differentiated these finds from those contained in the underlying Level 2 deposits.

In the grid units excavated toward the upper part of the slope, these topographic and stratigraphic arrangements implied lateral contact between Level 2 and Level 1 (Figure 10.3b). The presence in the latter of material derived from the former (namely, gravel and pebbles but almost certainly smaller-sized skeletal parts, such as isolated teeth) can thus be explained by the operation of progradation mechanisms (e.g., erosion by runoff). A
similar situation existed along the main axis of the excavation because, in unit N36, (1) the slope was very steep and (2) Level 2 lay in an immediate subsurface position (especially along the interface with the M column of the grid). The Level 1 deposits recognized further downslope beveled out against this steep slope and, as a result of this disposition, must also include some bone material derived by progradation from upslope Level 2. Such must have been the case especially in the grid units located at the foot of the slope (N35 and O/N34A+B), where the bone bed was thickest (~30 cm).

Further downslope, Level 1 thinned out. It was no more than ~10 cm thick in N33 and even thinner in N32, except in the gully against the wall. This grid unit was excavated first as a stratigraphic recognition trench (Chapter 3). Because of this, the two levels went undifferentiated at the time of digging; consequently, assignment to either Level 1 or Level 2 of the finds made in N32 during the initial couple of days of uncertainty was a post-facto process, carried out on the basis of field notes and inevitably entailing a margin of error.

The Panta Strămoșilor Deposits: Formation Process
The texture of the Panta Strămoșilor deposits, the patterns of bone preservation, the erosional features, and the sedimentation hiatuses documented by the cementation of stabilized surfaces (or the growth of stalagmites over them) are different lines of evidence that, taken together, form a consistent fabric. The direct radiocarbon dates for the fossils (Chapter 8) agree with the uranium-thorium (U-Th) dates for the speleothems collected in direct stratigraphic relationship with the bone accumulations (Chapter 6), and both are in turn consistent with overall stratigraphic patterns. Thus, although doubtless representing the outcome of a complex process, the deposits excavated at the Panta Strămoșilor must have accumulated in ordered and intelligible fashion, and there is nothing in their composition that questions the premise that they were geologically in situ at the time of excavation. Based on these data, we suggest a formation process divided into a number of principal episodes (Figure 10.5).

Episode 1
The earliest depositional episode recorded in the excavated sequence is the accumulation of the upper reaches of Level 2. The nature of the deposit indicates that the accumulation resulted from a rhythmic succession of torrential events of variable but always high or very high energy, entailing the long-distance displacement and water rolling of kilogram-size clasts. According to provenience, these clasts can be divided in two categories: (1) material washed in from the outside (non-limestone pebbles and cobbles derived from the detritical cover of the Ponor-Plopa Massif or from geological formations located upstream); and (2) material caught up by water flowing through the endokarst (limestone blocks, speleothems, and animal bones).

These clasts, markedly heterometric, were enveloped in a matrix of sand and gravel sufficiently abundant to completely bury them as the competence of the transportation agent decreased and each individual torrential event came to an end. Their rapid, syndepositional burial is also implied by the excellent chemical preservation of the bone surfaces, which at most displayed a bit of smoothing, suggests that at the time of displacement the bones were still covered by soft tissue (or at least the periosteum and some ligaments). This inference is consistent with the fact that articulating parts of single skeletons were found in adjacent position (e.g., an ensemble of cervical vertebrae recovered toward the base of the excavation in the N36 grid unit), which in turn implies the transportation of body parts still attached by ligaments.

Combined, these observations indicate that each successive torrential episode was separated from the previous one by a geologically short interval of time—sufficiently short for the decomposition of the soft tissues of the bears that died in the cave during such intervals to have remained incomplete. The radiocarbon dating of Level 2 samples (Chapter 8) confirms the time depth of the deposit, as it returned results of ~43.0 ka 14C before present (BP) (~46.3 ka cal BP) for its upper part (< 20 cm below the surface), of ~45.5 ka 14C BP (~49.0 ka cal BP) farther down (20–40 cm below the surface), and of ~47.6 ka 14C BP (~51.3 ka cal BP) toward the base of the N37 trench (55 cm below the surface). These results suggest an average rate of accumulation in the range of 10 cm per millennium throughout the deposition of Level 2. They thus indicate that the unexcavated, several meter thick “base of the iceberg” of the Peștera cu Oase fossiliferous fill is of Marine Isotope Stage (MIS) 4 age (or earlier).

Episode 2
The dates for the bear bones in the surficial part of Level 2 provide a terminus post quem of ~463 ka cal BP for the phase of stabilization that followed. This time horizon is consistent with the 473/+/35/~33 ka BP uranium-series (U-series date) (10 uncertainty) obtained for the base of stalagmite PPL9, collected toward the downstream end of the Galeria Culcușurilor, near the Poarta (Chapter 6). This is because the growth and permanence to the
present of this speleothem would not have been possible with subsequent recurrences of the torrential regime responsible for the accumulation of Level 2 in upstream Panta Strâmoloșilor. This evidence carries the implication that all finds and features found on the surface of the Peștera cu Oase galleries (namely, the bear nests) must post-date the moment when the torrential regime ceased (i.e., ~46.3 ka cal BP). Otherwise, they would not have survived (where the features are concerned) or have avoided burial in water-lain sediments (where the bones are concerned). Bears last hibernated inside the Peștera cu Oase during this stabilization episode, as confirmed by the radiocarbon dates obtained for bear bones from Level 1 of the Panta Strâmoloșilor and the surface of both the Panta Strâmoloșilor and the other passages. These dates place the last use of the site by bears in the ~44–46 ka cal BP range (Chapter 8), that is, right after the termination of the preceding period of torrential accumulation.

Episode 3

Directly dated cave bear remains document the persistence of the taxon until at least the 35–30 ka cal BP interval across the mountainous areas of central and southeastern Europe (Pacher and Stuart, 2009; Chapter 11). They could have gone extinct locally, in the Banat Mountains, at an earlier time, but there are no grounds to support such a hypothesis. Therefore, the fact that no bears hibernated in the Peștera cu Oase after ~44–46 ka cal BP must have been caused by increased competition with other carnivores for the use of the cave or by major changes in the topographic configuration of the system that favored (or

Figure 10.5 The chronometric foundation of the site formation model, based on the mutually concordant and stratigraphically consistent radiocarbon results from the Vienna and Oxford laboratories (Chapter 8) and on the U-Th dating of speleothem PPL6 (Chapter 6). The bars represent the two sigma calibrated age ranges, and the dotted arrows correspond to results reported as minimum ages only (SM, Sala Mandibulei; GcTC, Galeria celor Trei Cranii; GL, Galeria Lungă; PS, Panta Strâmoloșilor; GC, Galeria Culcușurilor). The OxA-15814 result, obtained on a Surface cave bear vertebra, is a younger outlier, and the porous nature of such bones makes complete decontamination more difficult to achieve; this is all the more so in this case because the sample was embedded in a stalagmite U-Th-dated to ~13.6 ka and the age obtained may well be an underestimation caused by younger carbon introduced by the stalagmite-generating, water-dripping process. For these reasons, we excluded OxA-15814 from the model.
The following episode is the displacement onto the Panta Strămoșilor of the bones that make up the Level 1 jumble. The dating of speleothem PPL6 shows that this displacement occurred some time during the interval defined by the age of the calcite deposits sandwiching the Level 1 material found adhering to the base of this complex speleothem, that is, between \(-42.5\) ka BP and \(-40.3\) ka BP (Chapter 6). Although the local topographic configuration facilitated its accumulation, the massive nature of the bone bed and the size of its components imply a part-hydraulic, although low-energy mechanism, and require a nearby point of entrance for the water involved in the process. Assuming the validity of this inference, the formation of the bone bed may thus be taken as a proxy for the establishment, at this time, of a direct connection between the Sala Mandibulei, from where the Level 1 bone material was evidently displaced, and the exokarst. An earlier date for the establishment of that connection remains conceivable but not beyond the terminus post quem provided by the chronology of bear hibernation in the Sala Mandibulei, that is, not beyond early Episode 3 or late Episode 2 times.

Episode 5

The \(-403\) ka BP result for the base of stalagmite PPL6b probably also dates the carbonate cementation of the bone bed in the squares located at the base of the slope (N35 and O/N34A+B). The implication is that the corresponding surface stabilized at this time, thus setting a terminus post quem for the deposition of the material making up the Surface stratigraphic unit of the Panta Strămoșilor (i.e., for the moment when the material found on the surface of the deposit came to lie on top of it as a result of derivation from an original upslope location). This material includes the remains of the humans and the ibex, all of which were directly dated to a time after \(-403\) ka cal BP (Chapter 8). Given their distribution (see Distribution discussion below), the entry route for the human and ibex material must have been the direct opening into this part of the system, formed some time between the end of Episode 2 and the beginning of Episode 4. And, given the direct dates obtained for these taxa, one can also infer that such an entrance remained in operation between \(-405\) and \(-173\) ka cal BP—in other words, that its closure coincides with the beginning of the period of the Peștera cu Oase-ubiquitous, post-LGM speleothem growth.

Episode 6

The last episode corresponds to the small-scale processes that gave its present form to the palimpsest of surface finds observed across the system. In the Panta Strămoșilor and adjacent areas, the direct radiocarbon dating of such finds indicates the occurrence of (1) farther downslope displacement of material, mostly bear bones, that had remained on the floor of the Sala Mandibulei since Episode 2 times (i.e., since \(-44-46\) ka cal BP) and (2) downslope displacement of material that first entered the cave during Episode 5. These displacement processes may have been synchronous with the Episode 5 inputs or continued beyond that time. Microstratigraphic observations indicate that the system remained geologically dynamic indeed for several millennia after \(-405\) ka cal BP. For instance, while the inner, dish-shaped side of the
Oase 2 face (which, when found, was the side facing up) was practically clean, the adjacent, refitting parietals were covered by the same homogeneous clay film that sealed the surface of the O34 grid unit, including the ibex and bear bones outcropping from the bone bed or lying on its surface (Figures 10.4c–10.4d). Moreover, a small fragment of the Oase 2 cranium was found in the clay fill of the nasal cavity of one of the bear crania recovered in O34. The agent involved in the deposition of such clays can only have been, therefore, runoff (and of very low energy)—enough to film-cover the bone material exposed on the surface of the deposit and infiltrate its hollows but not bury or envelop material raising above that surface). Given the ~27.5 ka cal BP date obtained for the clay-covered, ibex mandible recovered in O34-Surface (Chapter 8), the deposition of these clays probably postdates the LGM and correlates with the increased environmental humidity responsible for the post-LGM phase of speleothem growth observed throughout the Peștera cu Oase (Chapter 6).

The Issue of the Electron Spin Resonance Determinations

This reconstruction of the sequence and associated processes in the accumulation of the deposits of the Panta Strămoșilor and adjacent portions of the Peștera cu Oase system is based to a substantial degree on the 14C and U-series determinations on bones and speleothems (Chapters 6 and 8). At the same time, it is at variance with the electron spin resonance (ESR) determinations made on a series of surface and excavated cave bear remains from the same area, a number on the same cave bear specimens that yielded radiocarbon dates.

At face value, these ESR results from the surface of the Peștera cu Oase sedimentary fill can be taken to indicate, as argued in Chapter 7, that the site underwent significant disturbance. In this, the ESR study infers that the disparate ages obtained for two pairs of adjacent samples must reflect the chronologically heterogeneous composition of the surficial bone scatter, because they cannot be influenced by differences in the external dose rate. However, those results are affected to an unknown extent by the discovery post-facto that the instrument used to make the in situ gamma spectrometry measurements provided unreliable readings. Moreover, there is no reason to assume that two bones found together in one spot at the time of collection in 2005 had both been lying there for their full depositional histories (or even for most of them).

A slope with the inclination of the Panta Strămoșilor’s is a dynamic environment where thousands of years can separate the trapping in a wall niche of the bones lying there together, in apparent association, at the time of sample collection. Let us consider, for instance, the niche that corresponds to grid unit M36 and whence comes one of those two pairs, the mandible samples 10 and 10bis. While one of them may have been lying there, in direct contact with the wall, for some 40,000 years, the other could well have moved down much more recently from the middle of the Sala Mandibulei, a dozen meters upslope, where it could have been in contact with only clays and other bones, some 30 m below the roof, for the better part of those 40,000 years. In such a scenario, the history of radiation exposure of both samples would have been totally different.

Unfortunately, the data to resolve these issues are not available. Yet the relatively narrow range of radiocarbon dates on cave bear bones and teeth, and especially their correspondence with the U-series dates from the Panta Strămoșilor indicating that they are not merely minimum ages, makes it unlikely that the chronological distribution of the bear remains from the Surface and Level 1 stratigraphic units was as large as the ESR results suggest.

The Panta Strămoșilor Bear Remains: Spatial Distribution

To contribute to the site formation model inferred from the characteristics of the excavated deposits, we undertook a study of the spatial distribution of size- and shape-significant bear bones recovered in the Panta Strămoșilor excavation, grouped into the following categories (Tables 10.1 to 10.3; Figures 10.6 to 10.11): (1) complete and subcomplete crania; (2) complete and subcomplete arm and leg bones of adults (humerus, radius, ulna, femur, tibia, and fibula); (3) isolated teeth; and (4) phalanges. In the comparisons with Level 2, the Surface and Level 1 material was pooled together as, when considered separately, these two units were found to present identical distributions and category ratios.

The Level 2 distributions are graphically rendered in Figure 10.6. Where the larger items are concerned, there is no significant difference between the upper, mid- and lower-slope grid units. This rather even distribution is consistent with the torrential mode of accumulation inferred from the texture of the deposits. The same can be said of the overrepresentation of the smaller-sized skeletal elements (phalanges are five times more abundant than would be expected if the different bones were present in proportion to their abundance in individual skeletons; Table 10.2). Note, however, that this observation needs to be mitigated against the fact that an unknown proportion of the phalanges may have belonged to juveniles whereas the denominator used to calculate the index considers adult bones only. Even so, the magnitude
Table 10.1 Spatial and stratigraphic distribution of selected bear body parts from the Panta Strămoșilor excavation

<table>
<thead>
<tr>
<th>Quadrant(s)</th>
<th>Crania</th>
<th>Adult long bones</th>
<th>Isolated teeth</th>
<th>Phalanges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Surface</td>
<td>Level 1</td>
<td>Level 2</td>
<td>Surface</td>
</tr>
<tr>
<td>N32A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>N32B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>N32C</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N32D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N32ABCD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O32A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O32B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O32C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O32D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N33A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>N33B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N33C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>N33D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>O33A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>O33B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>O33C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O33D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>O33AB</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O33ABCD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N34A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>N34B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N34C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N34D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>N34AB</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O34A</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O34B</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>O34C</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O34D</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>O34CD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O34ABCD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N35A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>N35B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>N35C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>N35D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>N35ABCD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>O35A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>O35B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>O35C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>O35D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>O35AC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N36A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N36B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>N36C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>N36D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N36AC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O36A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>O36B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>O36C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O36D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>O36AC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O36ABCD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>N37A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N37B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N37C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>N37D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

(continued)
of the imbalance is such that differential representation of the body parts must be implicated. Moreover, the gradient seen in the distribution of phalanges and isolated teeth along the slope contrasts with the even distribution of the larger bones only in appearance; the gradient is an artifact of the much larger volume of Level 2 deposits excavated in rows 37 and 36. When this factor is considered, the pattern is also one of no variation along the axis of transportation; the density of isolated teeth and phalanges in the Level 2 deposits is approximately one per liter across the excavated area (Table 10.3).

The corresponding density values for the Surface and Level 1 material are distinct. For the smaller elements, they are much lower and show a decrease from the top to the bottom of the slope. The reverse is apparent for the larger elements. These indications are confirmed by the distribution of the Surface and Level 1 finds per quadrant (Figures 10.7 and 10.8), which further reveals first that a significant concentration of small skeletal elements exists in quadrants A and C of grid units O35–36, whence, conversely, came a very small proportion of the adult long bones and second that most of the larger adult bones were recovered in the grid units adjacent to the foot of the steepest part of the slope, in grid units N–O34.

A pattern of preferential accumulation at the base of the slope and against the wall is also apparent in the distribution of the cranial material. This can be seen in Figure 10.8, where only complete and subcomplete items are considered, as well as in Figure 10.9, where the distribution of all piece-plotted cranial fragments is compared with that of all other piece-plotted skeletal parts. The inheritance of small elements derived from Level 2 via progradation may, in places, have contributed to the observed concentrations of such elements in the Surface and Level 1 stratigraphic units. However, it cannot explain those concentrations.

Despite such a potential enrichment, phalanges are more than three times less abundant in these units, relative to the ensemble of complete and subcomplete adult long bones, than they should be if the different body parts were represented in proportion to their abundance in the skeleton.
The Distributions of Finds and Features

This is all the more so since, as aforementioned for Level 2, the phalanges may in part belong to juveniles. As the presence of juvenile phalanges would make the numerator larger than it should be and, hence, cause the value of the index to be larger than the calculated value, the true weight of phalanges in the “Surface+Level 1” assemblage may well be even less than the 1.4 estimate given in Table 10.2.

A number of inferences can be derived from the overall spatial distribution of bear body parts recovered in the Surface and Level 1 stratigraphic units of the Panta Strâmoșilor:

- Deposition was a primarily gravity-driven process whereby the larger and heavier bones, because of the greater momentum of their movement, were displaced over longer distances than the smaller ones and tended to accumulate against physical barriers (the cave wall; e.g., the complete and subcomplete crania in N32 and O34) or adjacent to where the angle of the slope broke markedly (which is halfway through row 35; e.g., the complete and subcomplete adult long bones in row 34).

- The direction of the displacement vector was at an approximately 45° angle with the axis of the Galeria Culcușurilor, explaining, in combination with the microtopography of the cave walls in the excavated area, the relative abundance of phalanges and isolated teeth in the niches of O35–36 (and especially so in their quadrants A and C), where infiltration in the narrow spaces between the surface of Level 2 and the encasing rock was easy for the smaller bones but problematic for the larger ones.

The Panta Strâmoșilor Non-Bear Remains: Stratigraphic Distribution

Despite the differentiation between Level 1 and Level 2, a degree of uncertainty exists concerning the correct stratigraphic assignment of individual finds from areas where provenience ambiguity pertains:

- Where Level 1 filled gullies or other erosive features and likely inherited material from Level 2.
Where there was lateral contact between Level 1 and Level 2 (which, especially if one considers the poor lighting and difficult working conditions, inevitably entailed a measure of decapage imprecision).

Where Level 2 was exposed or found immediately subsurface and was dug only at the end of the 2005 field season, at a time when, despite all the care, the circulation of the excavation crew had already created a fuzzy surficial layer and material labeled Level 2 could well correspond to Surface finds buried by trampling.

A detailed discussion of such uncertainties for the cave bear remains is impossible given their large number and also unnecessary because the magnitude of these problems is insufficient to impact their overall spatial distribution patterns. The chronological proximity of the remains would in any case warrant treatment of the material as a single sample for paleontological and paleobiological purposes (Quilès et al., 2006; Chapters 11–12). However, because it has implications for overall site history and formation processes, in particular for the understanding of the mode of accumulation of the human remains, this discussion is necessary for the non-bear material provenanced to Level 2, which is listed in Table 10.4.

As piece-plotting in Level 2 was carried out only occasionally, our revision focused on the date of the excavation of each find, compared with the date when the decapage of the interface between Level 1 and Level 2 was carried out. We considered stratigraphically secure any finds assigned to Level 2 whose associated excavation date was later than the date of the level’s decapage in the square or quadrant of provenience (as recorded in the daily detailed excavation log). When such a posteriority was not documented, we considered that a question mark was justified. After filtering for possible causes of error, we could conclude the following:

- Wolves are indeed present in the Level 2 deposits and in numbers that, although small compared with the bear component, are nonetheless significant in that the spatial distribution and body part representation patterns are the same.
- The cervid remains labeled Level 2 relate to the remains of the species recovered in the Surface and Level 1 stratigraphic units, as indicated by the fact
that a mandible fragment from Level 2 in N37C+D was glued back onto a larger, piece-plotted mandibular piece from Surface. The upper canine and antler fragments from N36B, where Level 2 outcropped as the surface of the deposit, probably reflect, in turn, the impact of trampling on deer cranial and dental material distributed (and piece-plotted) across the Surface and Level 1 stratigraphic units of adjacent quadrants.

Where ibex is concerned, the two N37C+D carpal bones assigned to Level 2 must reflect excavation or labeling error because one of them articulates with a metacarpal from Level 1. The N32 ibex material, in turn, is most certainly Level 1, as it was excavated before the stratigraphic differentiation was recognized and a scatter of surficial ibex bones (found to be ~27.5 ka cal BP or younger whenever its age was verified by direct radiocarbon dating; Chapter 8) extended across all of the excavated area and beyond, until at least some 10 meters farther downstream in the Galeria Culcuşurilor (Figure 10.10).

The explanation for this ibex material also applies to the three bones of fox labeled Level 2: one comes from N35B, where that level was exposed on the surface; the other two have the same N37C+D provenience as the ibex carpal that articulates with a Level 1 bone (an actual origin in this level being therefore impossible to exclude).

Given these conclusions, for the purposes of spatial distribution issues we have reassigned to the Surface+Level 1 unit of analysis all the Level 2 piece-plotted material from red deer and ibex, none of which satisfied the criteria to be considered probably or securely in Level 2 (Table 10.4). This reassignment is reflected in the plots presented in Figures 10.10 and 10.11. These plots further show that, in the areas of the Peştera cu Oase where systematic identification of all bone remains apparent on the surface was attempted (the Panta Strămoşilor and adjacent areas of the Sala Mandibulei and the Galeria Culcuşurilor), of the remains of noncave dwellers only the ibex material is ubiquitous—human remains do not extend into the Galeria Culcuşurilor, and no deer remains were observed on the Sala Mandibulei. This greater visibility of the ibex material is consistent with the radiocarbon evidence.
Showing that all dated ibex samples are significantly younger than those from bears, deer, wolves, and humans. Combined, the two lines of evidence indicate that the ibex remains entered the Peștera cu Oase at a time when, but for the deposition of the thin silt and clay lenses observed in the O35–36 niches, the Panta Strămoșilor slope had acquired its present form.

Where the mechanism of deposition is concerned, the distribution of the non-bear remains follows the same rules recognized for the Surface and Level 1 bear material. This is seen in the distribution of the cranial fragments (Figure 10.11). Their preferential accumulation against the rock wall of the Panta Strămoșilor, in O33–34 and in the O36 niche, is most apparent for the different fragments into which the Oase 2 human cranium broke as it rolled down the slope. This pattern suggests that the accumulation of the remains of the humans and herbivores from the Surface and Level 1 stratigraphic units was, like those of the bears with which they were associated, primarily gravity-driven. It also allows speculation as to why the excavation failed to recover some 10% of the Oase 2 cranium, as well as its anterior teeth that were lost postmortem; given their small size and the vector of the displacement process, such missing elements may well have ended up deep in the narrow recesses of the cave wall that extend into units P–Q/35–37 of the grid, beyond the reach of the excavation.

The Peștera cu Oase Surface Palimpsest: The Distribution of Finds and Features and Its Implications

In Figure 10.12, we plot, as a proxy for the overall distribution of the remains of the corresponding taxa, the location of the crania mapped in at the time of drafting of the plan of the Peștera cu Oase system (June 2003). The following observations are apparent:

- The distribution of bear crania is broadly coincident with that of the bear nests, and their limits can therefore be taken as indicating those of the area of the Peștera cu Oase where, during Episode 2 times, bears last hibernated in the cave.
- As fragmentary cave bear material is exposed on the surface until some 20 m beyond the most outward bear crania visible on the floor of the Galeria...
The Distributions of Finds and Features

Figure 10.10 Distribution of the piece-plotted bones of humans and herbivores recovered in the Surface and Level 1 stratigraphic units of the Panta Strâmsoiilor excavation (all fragmentation categories).
Table 10.4 Stratigraphic position of the non-bear bones labeled Level 2 at the time of excavation

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Description</th>
<th>Quadrant</th>
<th>Observations</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canis lupus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N36.118, 170</td>
<td>Axis (2)</td>
<td>N36A</td>
<td>Level 2 here was exposed as surface</td>
<td>Possibly Surface or</td>
</tr>
<tr>
<td>N36.113</td>
<td>Metapodial</td>
<td>N36A</td>
<td></td>
<td>Level 1</td>
</tr>
<tr>
<td>N36.445, 879</td>
<td>Third phalanges (2)</td>
<td>N36B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N36.722b</td>
<td>Premolar</td>
<td>N36B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N36.277</td>
<td>Tibia, right</td>
<td>N36B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N32.52</td>
<td>Femur, right, shaft</td>
<td>N32B</td>
<td>July 11–14, 2004; in N32, separation of Levels 1 and 2 was approximate and postexcavation; the excavation did not penetrate deep into deposits explicitly recognized as a different unit until July 15, 2004</td>
<td></td>
</tr>
<tr>
<td>N32.77</td>
<td>Humerus, right, shaft</td>
<td>N32B</td>
<td>July 22, 2004; all other bones from that day in N34 and O34 are labeled Level 1, including those mapped adjacent and sequentially (N34.125 and N34.126)</td>
<td></td>
</tr>
<tr>
<td>N32.105</td>
<td>Maxilla, right, shaft</td>
<td>N32A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N32.215</td>
<td>Second metacarpal, right</td>
<td>N32C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N31.127</td>
<td>Lumbar vertebra</td>
<td>N31C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N33.214</td>
<td>Upper third premolar, right</td>
<td>N33C</td>
<td>July 17, 2004; on this day, N33C and N33D were taken “down to a surface corresponding to what had been designated ‘Level 2’ in N32 on July 12–15”</td>
<td>Probably Level 2</td>
</tr>
<tr>
<td>N32.356</td>
<td>Third metacarpal, right Rib, shaft</td>
<td>N32ABCD</td>
<td>July 15, 2004; on this day, the excavation penetrated deep in Level 2, already partly excavated in previous days</td>
<td>Level 2</td>
</tr>
<tr>
<td>N32.392</td>
<td>Fourth metacarpal, right</td>
<td>N32ABCD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N33.124</td>
<td>First phalange</td>
<td>N33A</td>
<td>July 20–22, 2004; in N33A, the decapage of the surface of Level 2 had been completed July 16</td>
<td></td>
</tr>
<tr>
<td>N31.107</td>
<td>Cervical vertebra</td>
<td>N36C</td>
<td>July 20, 2005; on this day, Level 2 was taken down to about 50 cm below the original surface in N36C and N36D, but its decapage and superficial excavation dated back to 2004.</td>
<td></td>
</tr>
<tr>
<td>O32.403</td>
<td>Radius, right, proximal</td>
<td>O34A</td>
<td>July 24, 2004; the decapage of Level 2 had been made on the previous day</td>
<td></td>
</tr>
<tr>
<td>O34.191</td>
<td>First phalange</td>
<td>O34B</td>
<td>July 22, 2005; from a trench excavated deep into Level 2 (in O34, the decapage and excavation of the upper part of the level had already been made, in 2004)</td>
<td></td>
</tr>
<tr>
<td>O34.555</td>
<td>Sesamoid</td>
<td>O34C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N37.594</td>
<td>Lower third molar</td>
<td>N37CD</td>
<td>July 23, 2005; on this day, Level 2 was taken down to ca.72 cm below datum in N37C–D, where decapage and superficial excavation had been made on the previous day (but see note for ibex bone N37.661)</td>
<td>Probably Level 2</td>
</tr>
<tr>
<td>N37.52</td>
<td>Metapodial</td>
<td>N37CD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N37.190</td>
<td>Tibia, left</td>
<td>N37CD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N37.37</td>
<td>Cervical vertebra</td>
<td>N37D</td>
<td>July 22, 2005; mapped in with an unambiguous “Level 2” label to differentiate it from other bones from the same day and area labeled Surface</td>
<td>Level 2</td>
</tr>
<tr>
<td>O37.19</td>
<td>Caudal vertebra</td>
<td>O37CD</td>
<td>July 23, 2005; O37C and O37D dug separately in Surface and Level 1, then as a single unit, alongside N37CD, down to ca.72 cm below datum, in Level 2</td>
<td></td>
</tr>
<tr>
<td>Vulpes vulpes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N35.504</td>
<td>Radius fragment</td>
<td>N35B</td>
<td>Level 2 here was exposed at the surface of the deposit</td>
<td>Possibly Surface or</td>
</tr>
<tr>
<td>N37.51</td>
<td>Metapodial</td>
<td>N37CD</td>
<td>July 23, 2005; on this day, Level 2 was taken down to ca.72 cm below datum in N37C–D, where decapage and superficial excavation had been made on the previous day (but see note for ibex bone N37.661)</td>
<td>Level 1</td>
</tr>
<tr>
<td>N37.157</td>
<td>Mandible, left</td>
<td>N37CD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
Table 10.4 (continued)

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Description</th>
<th>Quadrant</th>
<th>Observations</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervus elaphus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N37.98</td>
<td>Mandible fragment</td>
<td>N37CD</td>
<td>Glued-back onto N37.34 (Surface) and N37.522 (indeterminate level)</td>
<td>Surface or Level 1</td>
</tr>
<tr>
<td>Cervus elaphus?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N36.116, 117, 1064, 1065, 1068, 1070</td>
<td>Antler fragments (6)</td>
<td>N36B</td>
<td>Level 2 here was exposed as surface; antler fragments were recovered in Level 1 in all adjacent quadrants</td>
<td>Surface or Level 1</td>
</tr>
<tr>
<td>O34.559</td>
<td>Antler fragment</td>
<td>O34C</td>
<td>Level 2 here was only superficially excavated; all other antler fragments from the Panta Strâmoșilor are Level 1 or Surface</td>
<td></td>
</tr>
<tr>
<td>N36.1040</td>
<td>Upper canine</td>
<td>N36B</td>
<td>Level 2 here was exposed as surface</td>
<td></td>
</tr>
<tr>
<td>Capra ibex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N36.304</td>
<td>Lunar, left</td>
<td>N36B</td>
<td>Level 2 here was exposed as surface</td>
<td>Possibly Surface or Level 1</td>
</tr>
<tr>
<td>N37.264</td>
<td>Scaphoid, left</td>
<td>N37CD</td>
<td>July 23, 2005; on this day, Level 2 was taken down to ca.72 cm below datum in N37C-D, where its decapage and superficial excavation had been made on the previous day; however, given that this bone has the same provenience as N37.661, a similar diagnosis applies with great probability</td>
<td>Probably Level 1</td>
</tr>
<tr>
<td>Capra ibex?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N32.74</td>
<td>Vertebra, thoracic</td>
<td>N32A</td>
<td>July 11–14, 2004; in N32, separation of Levels 1 and 2 was approximate and post-excavation; the excavation did not penetrate deep into deposits explicitly recognized as a different unit until July 15, 2004; the bone comes from close to the wall, where the surface of the deposit was gullied and filled with Level 1 material</td>
<td>Probably Surface or Level 1</td>
</tr>
<tr>
<td>N32.131</td>
<td>Vertebra, lumbar</td>
<td>N32C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N32.145</td>
<td>Rib, proximal</td>
<td>N32C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N32.315</td>
<td>Vertebra</td>
<td>N32ABCD</td>
<td>July 11–14, 2004; in N32, separation of Levels 1 and 2 was approximate and postexcavation; the excavation did not penetrate deep into deposits explicitly recognized as a different unit until July 15, 2004</td>
<td></td>
</tr>
<tr>
<td>N32.316</td>
<td>Rib, proximal</td>
<td>N32ABCD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N33.183</td>
<td>Coxal right, proximal</td>
<td>N33A</td>
<td>Date of excavation unknown (could be July 15, 2004, a day when mostly Level 1 and Surface material was excavated and the decapage of the surface of Level 2 was carried out)</td>
<td></td>
</tr>
<tr>
<td>N35.275</td>
<td>Rib</td>
<td>N35B</td>
<td>Level 2 here was exposed at the surface of the deposit</td>
<td></td>
</tr>
<tr>
<td>N36.1023</td>
<td>Incisor</td>
<td>N36B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N37.661</td>
<td>Carpal</td>
<td>N37CD</td>
<td>July 23, 2005; on this day, Level 2 was taken down to ca.72 cm below datum in N37C-D, where its decapage and superficial excavation had been made on the previous day; however, this bone articulates with the O36.62 metacarpal from Level 1, so the attribution to Level 2 must result from excavation or labeling error</td>
<td>Level 1</td>
</tr>
</tbody>
</table>
Figure 10.11 Distribution of the piece-plotted crania and maxillae of humans and herbivores recovered in the Surface and Level 1 stratigraphic units of the Panta Strâmoșilor excavation against that of all bear crania and maxillae (all fragmentation categories).
celor Trei Crani, the limits of the distribution are not an artifact of a putative masking of Episode 2 bones and features by the extensive calcite mantles that cover the floor of this passage around topographic stations 9 and 10.

• An empty space corresponding to most of the Sala Mandibulei breaks the distribution of bear crania inside the Peștera cu Oase.

• In this area, however, bear bones can be observed under the talus of large boulders, capped by thick stalagmitic columns, that accumulated against the north side of the Sala Mandibulei; as none were found on top of those boulders, the accumulation of the latter must postdate when bears last hibernated inside the Peștera cu Oase.

• Despite its good visibility everywhere else in the system, no ibex cranial material (or postcrania) was found on the surface of the Galeria celor Trei Crani, suggesting that the remains of this species entered the Peștera cu Oase via a route different from that of the bears.

• Such an alternative “ibex route” can only have been the direct connection between the Sala Mandibulei and the exokarst whose opening some time between the end of Episode 2 and the beginning of Episode 5 is hypothesized in the framework of the formation process previously proposed; given the stratigraphic and chronological constraints, the generation of this opening and the collapse responsible for the Sala Mandibulei’s large boulder accumulation are likely to correspond to one and the same event.

• The human remains, all found within the limits of the area of distribution of the ibex, probably also entered the system via the same route.

Although excavations were limited to the Panta Strâmoșilor, the nature of the subsurface deposits in the Galeria celor Trei Crani and the Galeria Lungă could be assessed through the observation of natural cuts.

In the Galeria celor Trei Crani, these were the >50 cm deep walls of several subsidence basins, which exposed a heterometric gravel with cobbles packed in a matrix of coarse sands and containing abundant, fragmentary, and evenly distributed cave bear bones. This deposit is identical to Level 2 of the Panta Strâmoșilor, and the direct radiocarbon dating of a maxilla collected on the surface of the Galeria celor Trei Crani (Sample 13; Chapter 8) provides a terminus ante quem of ~44.1 ka cal BP for its accumulation. Level 2 of the Panta Strâmoșilor and the exposed fill of Galeria celor Trei Crani are therefore likely to be geologically the same.

In the Galeria Lungă, the natural cuts were the walls of (small carnivore?) burrows excavated in the terminal part of the gallery, observed over a depth of 30–50 cm.
Under a surficial stalagmitic crust, they featured a plastic silt and clay fill, with the occasional small stone but no gravel and containing only scarce, rolled, small bones and teeth (in a ~1.5 kg sediment sample collected from the loose fill at the bottom of one of these burrows, we found only a rolled cranial fragment, a premolar, and the germ of a permanent canine of cave bear, the two teeth featuring slight water-induced patination).

These observations are consistent with the twin notions, incorporated in the formation process previously discussed, according to which (1) the fills of the Galeria Lungă and the Galeria celor Trei Cranii belong to different generations of the Peștera cu Oase speleogenesis and (2) the former’s connection with the exokarst closed well before the latter’s. This conclusion is further supported by the topographic information given in Figure 10.13. The fill of the Galeria celor Trei Cranii rises slowly and gradually (1 m every 15 m over some 60 m) from topographic station 10 to topographic station 13. The former station is where the outermost three bear crania in the passage (those after which it is named) are located, indicating that here the surface of the fill is still that which existed when bears used the cave; the latter, terminal station is where the fill abuts the roof of the passage and is located at a depth of only ~4 m from the exterior ground surface. In contrast, the Galeria Lungă is truncated abruptly by a speleothem-covered collapse (implying a slope whereby, over its last 25 m, the deposit rises on average 1 m every 3 m), and the vertical distance between the top of the passage’s fill and the exterior ground surface is ~12 m. Moreover, recent fox bones were observed on the floor of the Galeria celor Trei Cranii, and the metapodial of a domestic goat collected at the very end of this passage was directly dated to some time in the last few centuries (Chapter 8). Combined, these observations are consistent with the notion of a cluttering up of the Galeria celor Trei Cranii exit through the accumulation in geologically recent times of a talus of loose sediments and boulders through which only small mammals and isolated bones could pass.

The U-series dating of speleothems (Chapter 6) provides further clues to the fact that, contra the situation in the Galeria celor Trei Cranii, the Galeria Lungă became a stable environment, in terms of sediment buildup, during the last interglacial. Speleothems dated to MIS 5 exist on terraces lying only ~4 m above the floor of the Galeria Lungă, but none of such age were identified above the fill (of Panta Strâmoșilor Level 2 type) of the Galeria celor Trei Cranii. Here, if any MIS 5 speleothems exist, they must be buried by that fill, as may also be the case in the Panta Strâmoșilor, if the draperies and stalactites exposed along its walls by our excavation are indeed of MIS 5 age (as, although undated, they most likely are, given the stratigraphic constraints, which imply that they must be older than the ~50 ka cal BP Level 2 deposits that cover them). These facts suggest that, stratigraphically, the fill of the Galeria Lungă underlies that of the Trei Cranii and Culcușului passages and may well correspond to the breccia with bear bones exposed at the Puțul, for which ESR dating of bear teeth collected therein suggests an MIS 5 age (Chapters 5 and 7).

Overall Species Distributions and Changes in Site Function over Time

Of Wolves and Bears

The only non-bear taxon securely represented in Level 2 of the Panta Strâmoșilor is the wolf (Table 10.4). Since that level reflects a high-energy sedimentation environment, this association probably corresponds to the mix at the place of deposition of material originally accumulated (1) elsewhere in the endokarst (the bear bones) and (2) near the then extant entrance to the Peștera cu Oase passages (i.e., the entrance to the Galeria celor Trei Cranii) but washed deep inside (the wolf bones).

Where the palimpsest of surface finds is concerned, the time depth of its accumulation, coupled with the
changes in the topographic configuration of the system that can be inferred from the different lines of evidence previously discussed, provide a first level of explanation for the overlapping distributions of the different taxa. Namely, it is clear that (1) the bear remains derive from in situ hibernation deaths occurring deep inside the cave, which is to be expected and (2) the accumulation of the remains of humans and ibex, which long postdate the bears, is in all likelihood related to the opening at a later time of an entrance adjacent to the slope at the bottom of which the bones of those two species were for the most part found.

Two things, however, remain to be explained. First, a direct interaction between wolves and bear bones is implied by the taphonomic study's conclusion that the carnivore gnawing and puncture marks apparent in the bear remains were most probably caused by wolf scavenging rather than conspecific activity (Chapter 12), and, second, in the Surface and Level 1 stratigraphic units of the Panta Strâmoșilor, > 90 m inward from the point where the fill of the Galeria celor Trei Crani abuts the roof, there are remains of noncave dwelling species, namely, red deer, which postdate the period during which torrential accumulation can explain the presence of nonhibernating animals that far from the entrance.

Presumably, bears would not have hibernated in places that were within easy reach of scavengers, so a simultaneous use of the site by the different carnivore species identified can be ruled out as an explanation for the overlapping distribution of the bones of bears (including wolf-marked ones), wolves, and hyenas. A time-sharing scenario—that is, one where wolves and hyenas would come to the Peștera cu Oase at the end of the hibernation season to scavenge on the remains of hibernation deaths—is also unlikely, as such a scenario cannot explain why wolves and hyenas would have stayed away from the site (and the tons of frozen meat available therein in the form of deeply asleep bears) at other times of the year.

Therefore, a parsimonious explanation for the Episode 2 (~44–46 ka cal BP) species distribution pattern is that this episode conflates two separate consecutive moments of site use and that the segregation of these moments could not be picked up by radiocarbon because of the method’s limitations in resolving into shorter intervals the millennial time ranges it returns for periods close to its limit of applicability. In the first moment, the Peștera cu Oase would have remained a bear hibernation site, as documented by the extant nests and the associated skeletal remains of the bears themselves. In the second moment, the Peștera cu Oase, now abandoned by the bears, would have become available to wolves and hyenas, which scavenged the remains left behind by the site’s former tenants (bones and, possibly, partly mummified soft tissues too). This scenario can also explain the bones of red deer, some of which are carnivore-marked (Chapter 17)—they would have entered the site as parts of carcasses brought in by denning wolves in the framework of the second moment of Episode 2 site use. The cause underlying the changes in site function that would have occurred from one moment to the other remains, however, speculative. A possibility is that the second moment corresponds to a period when the cluttering up of the Galeria celor Trei Crani entrance had advanced to the point of preventing bear access but still allowed use by smaller-bodied wolves and hyenas.

At first glance, the fact that carnivore-marked bear bones also exist in Level 2 is inconsistent with this reasoning, as it establishes the co-occurrence of bear and wolf bones as the rule instead of the exception, thereby dispensing with the need for a special explanation. In fact, the bones recovered in this level are evidently displaced from areas of the site located upstream from the Panta Strâmoșilor and presumably include material originally accumulated much closer to the then extant entrance. If the bear bones thus displaced resulted from hibernation deaths, then such an original location must still have corresponded to an area suitable for hibernation, that is, one located at a distance from the entrance sufficient to provide the temperature and light appropriate environment required. So, if wolves were the agent involved in the Level 2 bear bone gnawing and the bear bones in question reflect hibernation deaths, then we have to admit that, during Episode 1 of the formation process, wolves had full access to hibernation areas located deep inside the Peștera cu Oase. We also know that carnivores other than bears indeed frequented the Sala Mandibulei and adjacent areas of the Peștera cu Oase during Episode 2 (rather than their bones having been introduced from the outside by geological processes), as this is implied by the intact, directly dated hyena cranium found in the Galeria Lungă. These observations, however, cannot counter the notion that a simultaneous use of the Peștera cu Oase passages by denning wolves and hyenas and hibernating bears would have been behaviorally anomalous. An explanation remains therefore necessary.

A realistic solution for the conundrum is that not all the bear bones from Level 2 reflect hibernation deaths and that such is namely the case with the carnivore-marked ones. As pointed out by Quilès et al. (2006), bears may have used the cave for shelter during nonhibernating parts of the year too. Death at such times may therefore, occasionally, have generated the presence of bear corpses in more exterior parts of the Peștera cu Oase passages. Scavenged by wolves prior to their torrential inward displacement, the bones from such dead bears would then have become mixed up, in the more interior locations

The Distributions of Finds and Features
where we excavated them, with the nonmarked bones of the species generated by hibernation deaths occurring in more interior areas of the cave, suited for bear nesting and beyond the reach of the wolves.

Where the Surface and Level 1 bones are concerned, this explanation, however, cannot apply, as the preservation of the bear nests themselves precludes the operation of the torrential mechanism required to displace 100 meters or more inward of the entrance remains originally accumulated there. A viable, alternative solution lies in admitting that (1) the postulated opening to the Sala Mandibulei through which penetrated, during Episodes 4–5 of our model, the surficial human and ibex material, formed prior to the earliest such penetrations (i.e., during the second moment of Episode 2), and (2) such was also, at that time, the access used by the wolves (and hyenas) that sheltered or denned (and died) inside the Peștera cu Oase.

This hypothesis would explain the presence in areas adjacent to the new opening of the remains of cervids (carnivore-marked and, therefore, presumably carnivore-accumulated too), plus the scavenging of the remains of bears that had used those areas for hibernation before they became directly connected to the exokarst. The spatial distribution patterns are consistent with such a scenario. Like those of humans and ibex, all remains of wolf, hyena, or deer come from the Sala Mandibulei, the Galeria Lungă, and the Panta Strâmoșilor (Figure 10.12). None were observed on the surface of the Galeria celor Trei Cranii, which would not expect to be the case if these non-bear carnivores accessed the site's interior passages via the Galeria celor Trei Cranii entrance.

A late Episode 2 (i.e., ~44 ka cal BP) opening of the Sala Mandibulei to the exokarst begs, however, the question of why the radiocarbon dates suggest a depositional hiatus at the site during the 43–41 ka cal BP interval. Conceivably, this hiatus may simply be an artifact of insufficient sampling, and the time of opening of the Sala Mandibulei entrance should indeed be decoupled from the time of the minor flooding event operating via that entrance that generated the Panta Strâmoșilor bone jumble. If the opening formed during the second moment of Episode 2, then it was more or less coincidental with the cluttering up of the Galeria celor Trei Cranii and both processes may well be interrelated. For instance, they could reflect, together with the period of overall stabilization of the site that followed (Episode 3, documented by the weathering of the bear bones subsequently buried in Level 1 of the Panta Strâmoșilor), a common underlying cause—external environmental change. Note that the rather abrupt transition from stadial to interstadial conditions marking the onset of Greenland Interstadial (GI 11) took place around ~44 ka cal BP. Through the expansion of mountain forests in the area, this change could have modified local ecosystems, thereby impacting the populations of large carnivores in significant ways. In the absence of direct information on local paleovegetation patterns at this time, this hypothesis remains speculative, yet useful—it reminds us that, alongside the modifications in the system's topography, global climate change and its regional paleoenvironmental consequences may also have contributed to the variation observed over time in the use (or abandonment) of the Peștera cu Oase by different carnivore taxa.

Of Ibexes and Humans

In the faunal assemblage generated by the excavation and sample collection work carried out inside the Peștera cu Oase, the ibex number of identifiable specimens (NISP) is almost double that of the cervids. Therefore, the fact that only a couple of the ibex bones were carnivore-marked (Chapter 17) cannot be explained as an artifact of sample size. Moreover, the direct dating of ibex material collected from the Surface and Level 1 stratigraphic units failed to show any chronological overlap with the carnivores that might have accumulated their remains (wolves and hyenas). The same applies to the remains of the Oase 1 and Oase 2 humans, neither of which is carnivore-marked.

A parsimonious explanation for the Surface and Level 1 ibex remains is, therefore, as follows. During MIS 2, the sinkhole to which the Sala Mandibulei became connected at the end of Episode 2 (at the earliest) or at the beginning of Episode 5 (at the latest) functioned as a shelter for ibex herds. In the context of this use of the site, the remains of natural deaths would have dispersed into the adjacent karstic passages through gravity, runoff, and short higher-energy discharges caused by late spring snow melting. Such natural deaths could have included the odd carnivore kill. In fact, differently from the case with the cervid remains, the evidence to that effect should reflect wolf activity in the exterior landscape, because no secure indication exists that carnivores denned inside the Peștera cu Oase during the time interval indicated by the directly dated ibex remains.

A similar mechanism can also explain the accumulation of the Peștera cu Oase humans. These, however, are represented only by skull material, whereas all skeletal parts are represented in the ibex remains. On the other hand, the lack of human postcrania, in particular the absence of neck vertebra despite the evidence for partial mumification of the Oase 2 cranium (Chapter 21), is not readily explained by the kinematics of the Panta Strâmoșilor's bone accumulation. Bearing this in mind, some form of human agency cannot be discarded as an explanation for the fact that, of all the taxa represented in the Panta Strâmoșilor, Homo sapiens is the only species that is represented by cranial material only (hyena is the
other Oase taxon with a similar body part representation, but the one cranium of this species is a surface find from the Galeria Lungă, where no excavation was carried out).

For instance, the adjacent sinkhole could have been used for the selective/ritual disposal/placement of skulls, of which one cranium eventually rolled down as far inside as the O34 grid unit of the excavation, while one mandible eventually made it onto the surface of the Sala Mandibulei. Or such disposals/placements may have been of complete bodies, of which only crania, favored by their spherical shape, were subsequently displaced by natural processes onto the inner karst locations where they have been encountered. However, no material evidence of the operation of that human agency has been obtained and no evidence of past human presence in the cave has been observed. Therefore, the parsimonious reading of the data is that, like those of ibex, the remains of humans reflect natural deaths occurring in the catchment of the sinkhole adjacent to the Sala Mandibulei, into which their corpses were eventually dragged by gravity or rain or snowmelt waters. As a result, skulls or skull parts thereof ended up in the Sala Mandibulei and the Panta Strămoșilor, after skeletonization and through the operation of primarily gravity-driven depositional mechanisms.

Conclusion

When all lines of evidence are considered, the stratigraphic and spatial distributions of the different animal species identified in the Peștera cu Oase system can be accounted for by a complex site formation process that, in short, we reconstruct as follows. Early in the Late Pleistocene, probably sometime during MIS 5, the entrance to the Galeria Lungă ceased to function, due to colmatation by an āboulis on the outside and, inside, the growth of mm-thick clay films and the cluttering up of the passages leading out from the Sala Mandibulei. This process must have involved the building up of sediment and āboulis on the outside and, inside, the growth of the massive stalagmitic columns formed over the chaos of blocks piled up against the north side of the Sala Mandibulei. This growth must postdate the last of the bears, wolves, and cervids accumulated in the cave and apparently by purely geogenic processes, eventually ended up. The subterranean landscape generated by this formation process was then sealed by the accumulation of mm-thick clay films and the cluttering up of the passages leading out from the Sala Mandibulei. This process must have involved the building up of sediment and āboulis on the outside and, inside, the growth of the massive stalagmitic columns formed over the chaos of blocks piled up against the north side of the Sala Mandibulei. This growth must postdate the last of the ibex and thus probably coincides with the Tardiglacial and Early Holocene phase of speleothem growth documented by the U-series dating of stalagmites collected in many different parts of the system. Finally, it was in the year 2002 AD that this amazing landscape could be appreciated for the first time in its total complexity by the ProAcva cavers, the first large-bodied mammals to enter the site in many millennia.
Part Seven

References
References

References

REFERENCES

Blaubeuren (Schwäbische Alb). Forschungen und Berichte zur Vor- und Frühgeschichte in Baden-Württemberg, 47–130.

Codreanu, V. 1990. Data on the Crocota speleae (Goldfuss) material collected from the Irița Cave (Bihor District) and preserved by the Museum in Cluj-Napoca. Studia Universitaria Babes—Bolyai, Geologia 35:81–92.

REFERENCES

Constantin, S. 2008. U-series dating of some very old speleothems from the Closani Cave (Southern Carpathians, Romania) using the RUBE approach (abstract). Fifth International Conference, Climate Change: the Karst Record, Chongqing, China, p. 80.

Dietrich, C.G. 2011. A clan of Late Pleistocene hyenas, *Crocuta crocuta spelaea* (Goldfuss 1823), from the Rösenbeck Cave (Germany) and a contribution to cranial shape variability. *Biological Journal of the Linnean Society* 103:191–220.

References

REFERENCES

Cave, a late Pleistocene cave site in Belgium. *Journal of Archaeological Science* 31:283–293.

REFERENCES

Henri-Martin, L. 1936. Nouvelles constatations faites dans la station aurignacienne de La Quina (Charente),
References

Holloway, R.L. 1981. Volumetric and asymmetry determinations on recent hominid endocasts: Spy I and II.
REFERENCES

References

REFERENCES

Müller, U.C., Pross, J., Bibusc, E. 2003. Vegetation response to rapid climate change in Central Europe during the past 140,000 yr based on evidence from the Führamoos pollen record: *Quaternary Research* 59:235–245.

References

REFERENCES

Pfeiffer, T. 1999. The morphological distinction of limb bones of Alces latifrons (Johnson 1874) and Megaloceros giganteus (Blumenbach 1799) from Middle- and Late Pleistocene localities of Germany. Krania 9:113–126.

References

REFERENCES

References

REFERENCES

References

Trinkaus, E. 2003. Neandertal faces were not long; modern human faces are short. Proceedings of the National Academy of Sciences USA 100:8142–8145.

Trinkaus, E. 2011. Late Neandertals and early modern humans in Europe: Population dynamics...
REFERENCES

Viret, J. 1954. Le loess à babes durcis de Saint-Vallier (Drôme) et sa faune de mammifères Villefranchiens.

REFERENCES

