New Data on the Transition from the Gravettian to the Solutrean in Portuguese Estremadura

Franklde ALMEIDA *
Henrique MATIAS **
Rui CARVALHO **
Telmo PEREIRA ***
Adelaide PINTO ****
Trenton HOLLIDAY *****

HISTORICAL OVERVIEW

The beginning stages of the Last Glacial Maximum (LGM) are marked in Europe by a significant reduction in the reservoir of faunal species. While the LGM is typically divided into the Early and Late stages, in the Iberian Peninsula, between 22 kyr BP and 21 kyr BP, the period during which humans first entered Europe, the transition from the Gravettian to the Solutrean is marked by a significant shift in the faunal record. This transition is thought to be the result of changes in environmental conditions, such as climate, vegetation, and the availability of resources.

From an anthropological perspective, the passage from the Gravettian to the Solutrean is one of the most interesting transition periods in Old World Prehistory. Between 22 kyr BP and 21 kyr BP, during the beginning stages of the Last Glacial Maximum, Iberia and Southwest France witness a process of substitution of a Pan-European Technocomplex – the Gravettian – by one of the first examples of regionalism by Anatomically Modern Humans in Europe – the Solutrean.

While the question of the origins of the Solutrean is almost as old as its first definition, the process under which it substituted the Gravettian started to be readdressed, both in Portugal and in France, after the mid 1990’s. Two chronological models for the period have been advanced, but until very recently the lack of new archaeological contexts of the period, and the fact that many of the sequences have been drastically affected by post depositional disturbances during the Lascaux episode, prevented their systematic evaluation.

Between 2007 and 2009, and in the scope of mitigation projects, archaeological fieldwork has been carried in three open air sites – Terra do Manuel (Rio Maior), Portela 2 (Leiria), and Calçada 2 (Porto de Mós) – whose stratigraphic sequences date precisely to the beginning stages of the LGM. Together with the multidisciplinary data from the Lapedo valley rock shelter sites – Abri do Lopar Velho and Abrigo do Aderci, under excavation since 1995, they allow us not only to re-evaluate the existing models for the transition, but also to enlarge the criteria of comparison between Gravettian and Solutrean in Portuguese Estremadura to subsistence strategies, mobility patterns, and inter site functional variability.

* Fundação para a Ciência e a Tecnologia, Universidade do Algarve, Portugal ** Faculdade de Ciências da Universidade de Lisboa, Portugal. *** Universidade do Algarve, Portugal. **** Geosciences, U. of Utah, USA. ***** Anthropology Department, U. of Utah, USA.
TWO TALES OF TWO SHELTERS... FOR NOW

Laguna Salinas E151 Palaeosol has an exposed and partially eroded area of ca. 20 square meters. Some of its characteristics include: a well-developed sand matrix, a single set of well-developed microfolds, the presence of carbonaceous concretions, and the occurrence of black, grey, and red weathered silts. The microfolds are typically horizontal and form a nearly continuous pattern. The sand matrix is composed of fine-grained quartz and feldspar grains. The concretions are mainly composed of calcium carbonate and iron oxide minerals. The weathered silts are characterized by their dark color and the presence of iron oxide minerals.

The two shelter talus layers included in this study are: Shelter A and Shelter B. Shelter A is located at 151.8 m a.s.l. and Shelter B is located at 152.1 m a.s.l. Both shelter layers are composed of weathered silts and sands with a high content of iron oxide minerals. The Shelter A talus layer is about 60 cm thick and the Shelter B talus layer is about 30 cm thick. Both talus layers are characterized by a well-developed sand matrix and a single set of well-developed microfolds. The microfolds are typically horizontal and form a nearly continuous pattern. The sand matrix is composed of fine-grained quartz and feldspar grains. The concretions are mainly composed of calcium carbonate and iron oxide minerals. The weathered silts are characterized by their dark color and the presence of iron oxide minerals.

The Shelter A talus layer is composed of weathered silts and sands with a high content of iron oxide minerals. The Shelter B talus layer is composed of weathered silts and sands with a high content of iron oxide minerals. Both talus layers are characterized by a well-developed sand matrix and a single set of well-developed microfolds. The microfolds are typically horizontal and form a nearly continuous pattern. The sand matrix is composed of fine-grained quartz and feldspar grains. The concretions are mainly composed of calcium carbonate and iron oxide minerals. The weathered silts are characterized by their dark color and the presence of iron oxide minerals.
PIES, SEWERS, ROADS, AND THE RECONSTRUCTION OF A TRANSITIONAL PROCESS

Between 1987 and 2000, the archaeology of the landscape project, conducted by the National Geographic Society and the University of Pennsylvania, examined the site of the ancient city of Persepolis. The project, known as Project Persepolis, was led by Dr. John E. Curtis and his team. The primary focus of the project was to understand the layout and function of the city, as well as the social and cultural context of its inhabitants.

The project's excavation and survey work provided new insights into the planning and development of Persepolis. The team discovered a series of monumental buildings, including the palace, the treasury, and the apadana. These structures were built using advanced techniques, such as the use of massive stone blocks and elaborate decorative carvings.

The team also conducted extensive research on the city's water management system. They discovered a network of aqueducts and cisterns that were used to bring water into the city from the surrounding mountains. This system was crucial for the city's survival, as the area around Persepolis is arid and lacks natural water sources.

In addition to the monumental structures and water management system, the project also revealed evidence of the city's urban planning. The team found evidence of a grid-like street system, with main avenues running north-south and east-west. This layout suggests a wellorganized and planned city, which is typical of urban centers in the ancient Near East.

The project's results have contributed significantly to our understanding of the ancient city of Persepolis. They have provided new insights into the city's architecture, engineering, and urban planning, as well as its social and cultural context. The project's findings have also shed light on the development of monumental architecture and urban planning in the ancient Near East.

Overall, the project has been a major contribution to our understanding of the ancient city of Persepolis and its role in the ancient Near East. The team's work has provided new insights into the city's history and has contributed to our understanding of the development of monumental architecture and urban planning in the ancient Near East.