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Figure 28. Proposed model for the role of SRPK2-DDX23 in the regulation of R-loops. RNA 

Pol II pausing (orange) recruits SRPK2 (purple) that phosphorylates DDX23 (gray) to prevent 

aberrant accumulation of R-loops and maintain the genome integrity. In the absence of either SRPK2 

or DDX23, the presence of R-loops favors DNA damaging events (e.g. through collisions with the 

replication machinery) that create genomic instability. 

 

signals the recruitment of both SRPK2 and DDX23. A similar mechanism linking Ser5P 

RNA Pol II and the recruitment of RNA-processing factors may explain the splicing-

dependent transcription pausing (Harlen et al., 2016; Nojima et al., 2015). “What are the 

differences, if any, between an R-loop-dependent and a splicing-dependent RNA Pol II 

pausing?” and “how does transcription pausing signal the nucleation of distinct molecular 

machineries?” are important questions that emerge from our model. Importantly, we 

should also consider the hypothesis that R-loops may form in response to the splicing-

dependent RNA Pol II pausing, as was recently shown in the case of transcription-blocking 

DNA lesions (Tresini et al., 2015). In this scenario, the SRPK2-DDX23 axis described 

here would be a good candidate to suppress such opportunistic R-loops. Further studies 

aimed at clarifying these open questions will certainly provide valuable insights into the 

mechanistic coupling between transcription, pre-mRNA processing and genomic 

instability. 
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5.5 Concluding remarks 

The work presented in this thesis reveals that pausing of RNA Pol II initiates a signaling 

cascade whereby SRPK2 phosphorylates DDX23 culminating in the suppression of R-

loops. We show that in the absence of either SRPK2 or DDX23, accumulation of R-loops 

leads to massive genomic instability. Importantly, we detected homozygous deletions of 

the entire DDX23 locus in ACC. Our results unravel the molecular details of a novel link 

between transcription dynamics and RNA-mediated genomic instability that may play 

important roles in cancer development. Altogether, our data allow us to propose a model 

whereby R-loops trigger the RNA Pol II pausing, which in turn nucleates SRPK2-

dependent DDX23 phosphorylation (Fig.28). This model implies that DDX23 activation 

follows the accumulation of R-loops, placing this helicase as a suppressor rather than a 

preventer of R-loops. This separates it from the role of several other RNA processing 

factors, such as SRSF1 or THOC1 that prevent the formation of co-transcriptional RNA-

DNA hybrids. Instead, DDX23 would fall within the family of R-loop suppressors, on 

which the helicase SETX occupies a prominent position. Notably, while SETX resolves 

RNA-DNA hybrids to promote transcription termination (Skourti-Stathaki et al., 2011), we 

suggest that DDX23 acts to release RNA Pol II from R-loop-mediated pausing throughout 

the gene body during transcription elongation.  



 

 

 

 

 

 

 

 

 

 

To fight one might need to know  technique, but to hunt one need to use instincts. 

Anonymous 

 

What one fool can do another can do better! 

Feynman 

 

At some point, everything's gonna go south on you... everything's going to go south and you're going to say, 

this is it. This is how I end. Now you can either accept that, or you can get to work. That's all it is. You just 

begin. You do the math. You solve one problem... and you solve the next one... and then the next. And if you 

solve enough problems, you get to come home….  

In the face of overwhelming odds, I'm left with only one option, I'm gonna have to science the shit out of this. 

Andy Weir 
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Cell culture 

U-2OS, HeLa and MCF7 cells were grown as monolayers in Dulbecco's modified Eagle medium-

DMEM (Invitrogen, Carlsbad, CA), supplemented with 10% (v/v) FBS, 1% (v/v) non-essential 

amino acids, 1% (v/v) L-glutamine and 100 U/ml penicillin-streptomycin. MCF10A cells were 

cultured in DMEM/F12 (Invitrogen, Carlsbad, CA) supplemented with 5% (v/v) horse serum, 

100µg/ml EGF, 1mg/ml Hydrocortisone, 1mg/ml cholera toxin, 10mg/ml insulin and 100U/ml 

penicillin-streptomycin (Debnath et al., 2003). All cells were maintained at 37°C in a humidified 

atmosphere with 5% CO2.  

 

RNA interference 

RNAi was achieved using synthetic siRNA duplexes. siRNAs targeting the firefly luciferase (GL2) 

were used as controls (Eurogentec, Seraing, Belgium). Cells were reverse transfected with 10 μM 

siRNAs using OptiMEM (Invitrogen) and Lipofectamine RNAiMAX (Invitrogen), according to the 

manufacturer's instructions. The sequence of the siRNAs is shown in Material and Methods 

Table 1. 

 

Plasmid construction and transfections 

DDX23 expression plasmids were obtained upon modification of pET21a(+)-DDX23 (kindly given 

by Ralf Ficner) as follows: pEGFP-DDX23WT was constructed by ligating XhoI+XbaI digested 

pET21a(+)-DDX23 insert fragment into NheI+XhoI digested pEGFP-N1 vector. In order to make 

pEGFP-DDX23PhosM, a 715b fragment with nine mutations (S23D, S49D, S57D, S59D, S61D, 

S63D, S65D, S106D, S118D) and NheI and Van91I sites was synthetically constructed using 

GeneArt
TM

 technologies and cloned into pEGFP-DDX23WT. Similarly for pEGFP-DDX23PhosIA, 

a 715b fragment with nine mutations (S23A, S49A, S57A, S59A, S61A, S63A, S65A, S106A, 

S118A) and NheI and Van91I sites was synthetically constructed using GeneArt
TM

 technologies 

and cloned into pEGFP-DDX23WT. pEGFP-DDX23PhosM was later digested using XcmI and 

self-ligated to get helicase truncated mutant pEGFP-DDX23PhosM∆Hel. Plasmids were 

transfected with supplier’s protocol from Lipofectamine 3000 (Invitrogen). RNaseH1-mCherry 

expression was induced with 2.5 μg/ml doxycycline (Sigma, St Louis, MI). The list of all plasmids 

used in this study is shown in Material and Methods Table 1. 
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Western blot and sub-cellular fractionation 

Whole cell protein extracts were prepared by cell lysis with SDS-PAGE buffer (80 mM Tris-HCL 

pH 6.8, 16% glycerol, 4.5% SDS, 450 mM DTT, 0.01% bromophenol blue) with 200 U/ml 

benzonase (Sigma) and 50 μM MgCl2 and boiling for 5 min. For cellular fractionation, U-2OS were 

swelled and fractioned to separate cytosolic fraction and nuclei (De Almeida et al., 2010). Whole 

nuclei were then lysed in RIPA buffer (50 mM Tris pH=8.0, 150 mM NaCl, 1% NP-40, 0.5% 

Sodium deoxycholate, 0.1% SDS) and centrifuged for 10 min at 15000 rpm to isolate all the 

nucleoplasmic proteins. The chromatin fraction was digested with 20U DNase I. Proteins from the 

different fractions were precipitated using standard trichloro acetic acid-acetone method (TCA-

acetone method). Equal amounts of protein extracts were resolved by SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) and transferred to a nitrocellulose membrane. Details of antibodies 

used are mentioned in Material and Methods Table 1. 

 

Isolation of chromatin with RNase A digestion  

Nuclei from HeLa cells were isolated as previously described (De Almeida et al., 2010). Briefly, 

HeLa cells were swelled and fractioned to separate cytosolic fraction and nuclei. Whole 

nuclei were re-suspended in 1X RNase reaction buffer (20 mM Tris-HCl (pH=8.4), 50 mM KCl, 5 

mM MgCl2, 20mM DTT) and divided into two halves. One half was digested with 1.5U RNase A 

(Roche) for 90min at 37
0
C and another with buffer alone. RNase A  digested and undigested nuclei 

were re-suspended  (5% Glycerol, 20mM Tris (pH=7.9), 75mM NaCl, 0.5mM EDTA, 0.85mM 

DTT, 0.125mM PMSF) and lysed (20mM HEPES (pH=7.6), 300mM NaCl, 0.2mM EDTA, 1mM 

DTT, 7.5mM MgCl2, 1M Urea, 1% NP40) on ice for 10min. The samples were centrifuged for 10 

min at 15000 rpm to isolate chromatin. The step is repeated to isolate pure chromatin. The 

chromatin fraction was digested with 20U DNase I. Proteins from different fractions were 

precipitated using the standard TCA-acetone method. Equal amounts of protein extracts were 

resolved by SDS-PAGE and transferred to a nitrocellulose membrane. Details of antibodies used 

are mentioned in Material and Methods Table 1. 

 

Immunofluorescence 

U-2OS cells grown on coverslips were fixed with 3.7% paraformaldehyde for 10 min at room 

temperature. The cells were then permeabilized with 0.5% Triton X-100/PBS for 10 min and 
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incubated with primary antibodies against γH2AX, cyclin A, SRPK1 and SRPK2  (Carvalho et al., 

2014). R-loops were detected with the S9.6 antibody following cell fixation and permeabilization 

with 100% ice-cold methanol and acetone for 10 min and 1 min on ice. Incubation with primary 

antibodies was followed by incubation with fluorochrome-conjugated secondary antibodies. All the 

washing steps were done with PBS containing 0.05% (v/v) Tween 20. The samples were mounted 

in Vectashield (Vector Laboratories, Burlingame, CA) with 4'-6-diamidino-2-phenylindole (DAPI) 

(Sigma-Aldrich) to stain the DNA. Images were taken using a Zeiss LSM 710 (Carl Zeiss, 

Oberkochen, Germany) confocal microscope with a 63x/1.4 oil immersion and quantified with 

Image J. List of primary and secondary antibodies used are mentioned in Material and Methods 

Table 1. 

 

Analysis of metaphase spreads 

Metaphases were prepared from HeLa cells as described (Gallego-Paez et al., 2014) with the 

following modifications. Briefly, five days after RNAi cells were synchronized with 1mM 

thymidine (Sigma) for 20 hours and released from thymidine block for 6 hours. Cells were then 

treated with 1μg/ml nocodazole (Sigma) for 2 hours and mitotic cells were collected by mitotic 

shake. Cells were then centrifuged and re-suspended in pre-warmed 75 mM KCl for 5 min and 

fixed with freshly prepared ice-cold Carnoy’s solution (3:1 methanol:acetic acid solution). Fixed 

chromosomes were washed and re-suspended in Carnoy’s solution. Chromosomes were then 

dropped on clean glass side, dried and stained with Giemsa (Millipore). Excess Giemsa stain was 

washed with distilled water and glass slides were dried. Dried chromosome spreads were mounted 

using Fluoromount-G medium (Southern Biotech, Birmingham, AL, USA). Randomly selected 

metaphase spreads were imaged using 100X oil immersion (Leica DM2500 microscope). 

Chromosomal aberrations were quantified on three independent experiments. At least 20 

metaphases per condition were analyzed on each independent experiment  

 

Cell cycle analysis  

The nuclear DNA content was estimated by flow cytometry analysis of cells stained with  

propidium iodide (PI) as described earlier (Carvalho et al., 2014). Briefly, U2-OS cells transfected 

with RNase H1-GFP or treated with triptolide were collected by trypsinization and fixed by drop-

wise addition of ice-cold 50% ethanol with gentle vortexing followed by RNA digestion and 

addition of PI (100 μg/ml). Acquisition of cells transfected with RNase H1-GFP was performed on 
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a FACS Calibur (BD Biosciences) and acquisition of cells treated with triptolide was performed on 

a BD Accuri C6 (BD Biosciences). Data was processed with FlowJo (TreeStar).  

 

Co-Immunoprecipitation 

Co-immunoprecipitations of RNA Pol II with SRPKs were performed on nuclei extracts as 

described (Carvalho et al., 2014). Briefly, isolated nuclei were lysed (20 mM Hepes pH 7.0, 10 

mM KCl, 0.1% (v/v) NP40, 6 mM MgCl2, 20% (v/v) glycerol, protease-(Roche) and phosphatase 

inhibitors (Roche) for 10mins on ice. Then nuclei were sonicated with a single pulse of 15 s at 20% 

intensity using a Soniprep150 and digested with 20U DNase I (Roche) at 4°C for 60 min before 

pre-clearing with Protein G Dynabeads (Life Technologies) at 4°C for 30 min. 1µg of DNase I 

digested DNA was run on 1% agarose gel to check if DNA is fragmented in the given conditions 

(Extended Data Fig.2d). Samples were diluted in IP buffer (20 mM Hepes pH 7.0, 10 mM KCl, 

1.5 mM MgCl2, 0.2%(v/v) Tween20, 10% (v/v) glycerol, 1 mM DTT) and incubated with 

respective antibodies overnight at 4°C. The protein complexes were pulled down using Protein G 

Dynabeads for 2h at 4°C, washed one time in wash buffer (20 mM Hepes pH 7.0, 50 mM KCl, 1.5 

mM MgCl2, 0.2% (v/v) Tween20, 10% (v/v) glycerol, 1 mM DTT) with increasing KCl 

concentrations of 50 mM, 100mM and 150 mM. The final wash was made in IP buffer. Protein 

samples were then eluted in 2X Laemmli buffer and resolved by SDS-PAGE before 

immunobloting. 1/10th of the total cell lysate was used as input samples. Overexpressed DDX23-

WT or DDX23-PhosM-ΔHel proteins were immunoprecipitated from U2-OS whole-cell lysates 

with a T7 antibody (Millipore, AB3790). Before sonication, cells were cross-linked for 5 min with 

1% formaldehyde followed by quenching with 1M glycine. Pulled down complexes were resolved 

by western blot. List of antibodies used are mentioned in Material and Methods Table 1. 

 

DRIP 

DNA-RNA hybrids were immunoprecipitated as described earlier (Ginno et al., 2012) with 

following modifications. Briefly, U2-OS cells transfected with control, DDX23 and THOC1 RNAi 

were collected after 72hr and lysed in lysis buffer (100 mM NaCl, 10 mM Tris pH 8.0, 25 mM 

EDTA pH 8.0, 0.5% SDS, 50µg/ml Proteinase K) for 5hr at 45
0
C. Nucleic acids were extracted 

using standard phenol-chloroform extraction protocol and re-suspended in DNase/RNase-free 

water. Nucleic acids were then fragmented using restriction enzyme cocktail (20U each of EcoRI, 

BamHI, HindIII, BsrgI and XhoI). Half of the sample was digested with 40U RNase H (NZYtech) 
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to serve as a negative control, for about 36-48hr at 37
0
C. Digested nucleic acids were cleaned with 

standard phenol-chloroform extraction method and res-suspended in DNase/RNase-free water. 

DNA-RNA hybrids were immunoprecipitated from the total nucleic acids using 6.5µg of S9.6 

antibody in binding buffer (10 mM NaPO4 pH 7.0, 140 mM NaCl, 0.05% Triton X-100) overnight 

at 4
0
C. 50µl Protein A/G magnetic beads (Pierce™, Thermo scientific) were used to pull down the 

immunoprecipitates at 4
0
C for 2-3hrs. Pulled-down complexes were washed twice with binding 

buffer, once using TE buffer each for 15min at RT, followed by elution (50 mM Tris pH 8.0, 10 

mM EDTA, 0.5% SDS, 2.5µg proteinase k) for 30 min at 55
0
C. Nucleic acids were extracted using 

phenol-chloroform method. Restriction enzyme digested nucleic acid material was used as input. 

The relative occupancy of the immunoprecipitated DNA-RNA hybrids at each locus was estimated 

by RT-qPCR as follows: 2
(CtIn− CtIP)

, where 
CtIn

 and 
CtIP

 are mean threshold cycles of RT-qPCR done 

in duplicate on samples from input and immunoprecipitations, respectively. The sequence of the 

primers is shown Material and Methods Table 1. 

 

RNA isolation and quantitative RT-PCR 

RNA isolation and cDNA preparation was made as described earlier (Grosso et al., 2015). Briefly, 

total RNA was isolated from U2-OS cells transfected with control or THOC1 siRNAs for 48h 

using TRIzol (Invitrogen). cDNA was made using Superscript II Reverse Transcriptase 

(Invitrogen). RT-qPCR was performed in the ViiA Real Time PCR (Applied Biosystems, CA, 

USA), using SYBR Green PCR master mix (Bio-Rad). The relative RNA expression was estimated 

as follows: 2
(Ct reference – Ct sample)

, where Ct reference and Ct sample are mean threshold cycles of RT-

qPCR done in duplicate of the U6 snRNA (reference) and the gene of interest (sample). All primer 

sequences are presented in Material and Methods Table 1. 

 

ChIP-qPCR and ChIP-seq 

Chromatin immunoprecipitation (ChIP) was performed in U-2OS cells as described (de Almeida et 

al., 2011; Carvalho et al., 2013). Antibodies used for ChIP were mentioned in Material and 

Methods Table 1. The relative occupancy of the immunoprecipitated protein at each DNA locus 

was estimated by RT-qPCR as follows: 2
(Ct Input − Ct IP)

, where Ct Input and Ct IP are mean threshold 

cycles of RT-qPCR done in duplicate on DNA samples from input and specific 

immunoprecipitations, respectively. The sequence of the primers is shown in Material and 

Methods Table 1. ChIP-seq was performed as described (de Almeida et al., 2011). Briefly, ~80% 
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confluent non-transformed human mammary epithelial cells (MCF10A), were incubated with 1% 

(v/v) formaldehyde for 10 min to perform cross-linking and quenched with 250 mM glycine for 5 

min. Cells were lysed and sonicated to shear chromatin to get 100-300bp fragments. 1µg of input 

DNA was run on 1% agarose gel to check if most of the fragmented DNA lie within the range of 

100-300bp. Pre-cleared chromatin was incubated separately with antibodies against SRPK1 

(ab90527, Abcam) or SRPK2 (A302-467A, Bethyl Laboratories) overnight at 4
0
C. ~1/10

th
 of the 

sample was taken aside as inputs. Immunoprecipitated and input DNA were subsequently purified 

and quantified. For biological replicates, all steps were repeated using independent samples. 

Libraries were prepared with DNA from two biological replicates according to the Illumina 

protocol and sequenced at the GeneCore genomics service center at the EMBL. 

 

Bioinformatics Analyses 

RNA-seq, GRO-seq and RNA Pol II ChIP-seq data for MCF10A were obtained from the Sequence 

Read Archive (RNA-seq: SRX685939; GRO-seq: ERR034678, ERR039508, ERR039509; RNA 

Pol II ChIP-seq: SRX143301). The quality of HTS data was assessed with FastQC 

(www.bioinformatics.babraham.ac.uk/projects/fastqc). ChIP-seq reads were aligned to the 

reference human genome (GRCh37/hg19 assembly) with Bowtie (Langmead et al., 2009) and 

filtering for uniquely aligned reads. Enriched regions were identified for each individual replicate 

using MACS (Zhang et al., 2008), with a false-discovery rate of 0.05. Only genomic regions 

consistently identified between biological replicates were considered for downstream analyses. 

Finally, ChIP-seq enriched regions were assigned to annotated genes, including a 4 kb region 

upstream the transcription start site and downstream the transcription termination site (Extended 

Data Table 1). Gene annotations were obtained from Ensembl (GRCh37.75 version (Flicek et al., 

2014)) and merged into a single transcript model per gene using BedTools (Quinlan and Hall, 

2010). For individual and metagene profiles, uniquely mapped reads were extended in the 3’ 

direction to reach 150 nucleotides with the Pyicos (Althammer et al., 2011). For the metagene 

profile, genes were aligned at the first and last nucleotides of the annotated transcripts and read 

counts were scaled as follows: the 5’ end (10 kb upstream of the transcription start site) and the 3’ 

end (10 Kb downstream of the transcription termination site) were unscaled and averaged in a 100 

bp window, and the remainder of the gene was represented by 200 values from cubic spline 

interpolation so that all genes seem to have the same length. Individual profiles were produced 

using a 20 bp window. All profiles were plotted on a normalized reads per kb per million mapped 

reads (RPKMs). Expression levels (TPMs) from RNA-seq and GRO-seq datasets were obtained 

using Kallisto (Bray et al., 2016). Transcriptionally active genes were defined as those with 



 

 

 

 

 

 

 

 

 

 

 

We read the world wrong and say that it deceives us. 

Tagore 

 

The adventurous student will always study classics…. it requires training such as the athletes underwent the 

steady intention almost of the whole life to this object. Books must be read as deliberately and reservedly as 

they were written. 

Henry David Thoreau 
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It is very simple to be happy, but it is very difficult to be simple. 

Tagore 

 

It’s not what you look that matters, it’s what you see. 
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Abbreviations   

∆Hel Helicase truncation 

µm Microns 

53BP1 p53-binding protein 1  

ACC Adenoid cystic carcinoma  

ACTB β-actin locus 

AGS Aicardi-Goutières Syndrome  

AKT Protein Kinase B 

ALS Amyotrophic lateral sclerosis 

APOE Apolipoprotein E locus 

AQR Aquarius helicase 

ATP Adenosine triphosphate 

bp Base pairs 

C.elegans Caenorhabditis elegans 

CAN Copy number alterations 

CpG Cytosine base followed immediately by a Guanine base 

CTD-RNA Pol II C-terminal domain of RNA polymerase II 

DDX23 DEAD box helicase 23 

DNA Deoxyribonucleic acid 

DNMT3B1 DNA cytosine-5 methyltransferase 3b isoform 1 

DRIP/DRIP-seq DNA-RNA immunoprecipitation/DNA-RNA immunoprecipitation 

sequencing 

DSB(s) DNA double strand break(s) 

dsDNA Double stranded DNA 

dsRNA Double stranded RNA 

FACT FAcilitates Chromatin Transcription complex  

FMR1 Fragile X mental retardation 1 locus  

G4-DNA G-quadraplex DNA 

GRO-seq Global Run-on sequencing 

H2A Histone 2A 

H2B Histone 2B 

H3 Histone 3 

H3K36me3  Trimethylation of lysine 36 of histone H3  

H3K9me3 Dimethylation of lysine 9 of histone H3  

HeLa Cervical adenocarcinoma cells 

kb Kilobases 

Kda Kilo Daltons 

mRNA Messenger RNA 

ncRNA(s) Non-protein coding RNA(s) 

PAS Poly-adenylation sites  

PhosIA Phospho inactive 

PhosM Phosphomimetic 

RNA  Ribonucleic acid 
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RNA Pol I/II/III RNA Polymerase I, RNA Polymerase II, RNA Polymerase III 

RNAi RNA interference  

RNA-seq RNA sequencing 

RNP Ribonucleoprotein 

RPA Replication protein A 

RPKMs Reads per kb per million mapped reads  

S.cerevisiae Saccharomyces cerevisiae 

S.Pombe Schizosaccharomyces pombe 

Sen1/SETX Senataxin helicase 

Ser5p RNA Pol II Serine 5 phosphorylated RNA polymerase II 

SETD2 SET Domain Containing 2 

siRNA(s) small interfering RNA(s) 

snRNA(s) Small nuclear RNA(s) 

snRNP(s) Small nuclear ribonucloprotein particle(s) 

SNRPN Small Nuclear Ribonucleoprotein Polypeptide N locus 

SR protein Serine/arginine group of proteins 

SRPK1 Serine/arginine protein kinase 1  

SRPK2 Serine/arginine protein kinase 2 

SRSF1 (or 

ASF/SF2) 

Serine/arginine splicing factor 1  

SSB(s) DNA single strand break(s) 

ssDNA Single stranded DNA 

THO/TREX TRanscription EXport complex  

THOC1 THO complex 1 

Tip60 Histone acetyltransferase KAT5 

TOP1 Human topoisomerase 1 

TPMs Transcripts per million 

U1 snRNP U1 Small nuclear ribonucloprotein particle(s) 

U2-OS Osteosarcoma cells 

U4/U6.U5 tri-

snRNP  

U4/U6.U5 tri-Small nuclear ribonucloprotein particle(s) 

U5 snRNP U5 Small nuclear ribonucloprotein particle(s) 

UV Ultraviolet light 

WT Wild type 

XRN2/Xrn2/Rat1 5’-3’ exoribonuclease 2  

γH2AX Serine 139 phosphorylated histone 2A variant x 

ChIP/ChIP-seq Chromatin immunoprecipitaion/chromatin immunoprecipitation 

sequencing 

RT-qPCR Real time quantitative polymerase chain reaction 
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