List of Figures

Figure 2.1. Worldwide prevalence of diabetes in 2000 and estimates for the year 2030 (in millions).

Figure 2.2. Model of the progressive pathogenesis of type 2 diabetes.

Figure 2.3. Glucose stimulated insulin secretion.

Figure 2.4. Insulin signal transduction.

Figure 2.5. Examples of different drugs used for type 2 diabetes treatment.

Figure 2.6. Action sites of main drugs currently used for diabetes treatment.

Figure 2.7. Main pathways leading to secondary metabolites.

Figure 2.8. Flavonoid basic structure.

Figure 2.9. Structures of the major groups of flavonoids.

Figure 2.10. The phenylpropanoid biosynthetic pathway.

Figure 2.11. Mechanism proposed for chalcone formation through enzymes CoA ligase and Chalcone synthase.

Figure 2.12. Scavenging of ROS by flavonoids.

Figure 2.13. Example of metal ion/flavonoid complexation.

Figure 2.14. Scheme representing the pathway of carbohydrate metabolism and targets where polyphenols have been shown to demonstrate multiple activities.

Figure 2.15. General aspect of *Coreopsis tinctoria* and a detail of the flowering tops.

Figure 2.16. Floral phytochemicals from the genus *Coreopsis*. Butein, okanin, lanceoletin chalcone-aurone derivatives.

Figure 2.17. *C. tinctoria* floral phytochemicals grouped by type of flavonoid structure.

Figure 3.1. Detail of 1H-1H correlations displayed in the COSY spectrum of compound CT-1.

Figure 3.2. $^2J_{C-H}$ and $^3J_{C-H}$ correlations displayed in the HMBC spectrum of compound CT-1.

Figure 3.3. 1H NMR spectrum with additional amplified aromatic region, of compound CT-2.

Figure 3.4. $^2J_{C-H}$ and $^3J_{C-H}$ correlations displayed in the HMBC spectrum of compound CT-2.
Figure 3.5. Chemical structure of the three compounds isolated; flavanokanin (88), okanin (79) and marein (78).

Figure 3.6. HPLC chromatographic profile (280 nm) and total ion chromatogram of *C. tinctoria* flowering tops aqueous extract.

Figure 3.7. HPLC chromatographic profile (280 nm) and total ion chromatogram of *C. tinctoria* flowering tops AcOEt fraction.

Figure 3.8. Summary of the chemical structures of compounds identified in *C. tinctoria*’s flowering tops aqueous extract and AcOEt fraction.

Figure 3.9. Detail of peaks P_{10} and P_{11} present in the one-week old aqueous extract chromatogram at two different wavelengths 420 nm and 380 nm.

Figure 3.10. Mechanism of chemical or enzymatic chalcone oxidation to the correspondent aurone.

Figure 3.11. Scheme representing natural isomer 2S-flavanomarein formation, and isomer 2R.

Figure 3.12. Proposed fragmentation for chalcone 78 (P_{11}) and flavanone 85 (P_4) pair in negative ion mode.

Figure 3.13. Fragments obtained from marein (78) in negative ion mode using different collision energies.

Figure 3.14. A-Chromatogram of the standard, marein (50 $µg/mL$), Rt 6.44 min, at 380 nm. B-Chromatogram of aqueous extract (Sample A) of *C. tinctoria* (1 mg/mL), Rt (main peak) 6.44 min, at 380 nm.

Figure 3.15. Correlation between peak area and marein concentration in the linearity range 10 $µg/mL$ – 100 $µg/mL$.

Figure 4.1. Effect of phlorizin on blood glucose levels of normal Wistar rats submitted to an oral glucose tolerance test, compared to control.

Figure 4.2. *C. tinctoria* aqueous extract effect on blood glucose levels of normal Wistar rats submitted to an oral glucose tolerance test. A- 25 mg/Kg; B- 50 mg/Kg; C-100 mg/Kg and D- 300 mg/Kg.

Figure 4.3. Glucose-tolerant and glucose-intolerant Wistar rat behaviour on OGTT throughout the 21 day subchronical study.

Figure 4.4. Weight variations of glucose-tolerant and glucose-intolerant controls during 21-day subchronical study.
Figure 4.5. Blood glucose levels in response to the oral glucose challenge in each group at the beginning, week 1, 2 and 3 of the treatment. 134

Figure 4.6. Hepatotoxicity biomarkers levels, alanine and aspartate transaminases (ALT and AST) comparing with glucose-intolerant control group. 134

Figure 4.7. Area under the glycemic curve obtained through OGTT at the end of the 1st, 2nd and 3rd weeks of treatment. 136

Figure 4.8. Biochemical analysis of hepatotoxicity parameters at the end of the treatment with C. tinctoria AcOEt fraction (125 mg/Kg): Aspartate transaminases and Alanine transaminases (AST and ALT). 136

Figure 4.9. Plasma lipase values at the end of the three-week experimental period. Glucose-intolerant animals treated with C. tinctoria. 137

Figure 5.1. Effect of C. tinctoria (0.1; 0.3 and 1 mg/mL) aqueous extract (A) and AcOEt fraction (B) on insulin secretion from MIN6 cells in static incubations at 2 and 20 mM glucose. 146

Figure 5.2. Time course of the effect of C. tinctoria (1mg/mL) aqueous extract and AcOEt fraction on insulin secretion from perifused MIN6 pseudoislets at 2mM and 20mM glucose. 147

Figure 5.3. MIN6 cell viability when pretreated for 24h with Coreopsis tinctoria extracts; (aqueous extract, AcOEt fraction) and pure compounds (marein (78) and flavanomarein (85)). 150

Figure 5.4. MIN6 cell viability when pretreated for 24h with Coreopsis tinctoria extracts: aqueous extract (Aq. Ext.) and AcOEt fraction (AcOEt Fr.) and challenged with oxidant tBHP (2h). 152

Figure 5.5. MIN6 cell viability when pretreated for 24h with marein and flavanomarein, and challenged with oxidant tBHP (2h). 153

Figure 5.6. Superoxide anion (O²⁻) measurements in (A) MIN6 cells challenged with tBHP and tBHP plus SOD. (B) MIN6 cells pretreated with C. tinctoria aqueous extract and AcOEt fraction and challenged with tBHP. 154

Figure 5.7. C. tinctoria extracts pretreatment (24h) effect on untreated and on cytokine-induced MIN6 cells apoptosis. 155

Figure 5.8. C. tinctoria pure compounds, Marein and Flavanomarein pretreatment (24h) effect on untreated and on cytokine-induced MIN6 cells apoptosis. 156
Figure 8.1. Scheme representing the extraction procedure for compound isolation from *Coeropsis tinctoria* (*CTD1*). 182

Figure 8.2. Scheme representing the extraction procedure for *Coeropsis tinctoria* extracts used in biological assays, HPLC-DAD-MS/MS characterization and quantification. 183

Figure A1.1. Percentage of DPPH reduction using *C. tinctoria* samples and appropriate controls, after 30 minutes of exposure. 232