Utilize este identificador para referenciar este registo: http://hdl.handle.net/10451/10498
Título: Copping with extreme dehydration:a physiological, biochemical and molecular study on the aquatic bryophyte Fontinalis antipyretica
Autor: Carvalho, Ricardo da Cruz de, 1980-
Orientador: Branquinho, Cristina, 1967-
Silva, Jorge Miguel Luz Marques da, 1965-
Palavras-chave: Briófitos
Stress oxidativo
Biologia celular
Teses de doutoramento - 2013
Data de Defesa: 2013
Resumo: Water is the most important element for life. During land invasion, the first plants had to face an extreme dry environment, undergoing desiccation, a process in which tissues virtually lose almost all water. Therefore, plants developed desiccation tolerance (DT) mechanisms through which they could experience the dry state and return to normal function upon rehydration. Nowadays, the organisms that have the ability to tolerate desiccation include members of different taxa such as microbes, lichens, bryophytes, vascular plants and animals. Nevertheless, DT is more frequent in lichens and bryophytes. Researchers have been closely studying DT mechanisms hoping to identify new genes that can be transferred through biotechnology to crop species, increasing their drought tolerance. In the Mediterranean region, the aquatic species Fontinalis antipyretica is periodically exposed to desiccation, in intermittent streams that lose their water during the dry season. Field observations suggest DT mechanisms in this aquatic bryophyte. The main objective of this Thesis is to study DT through the combination of physiological, biochemical and molecular techniques in a bryophyte from a habitat not usually reported as prone to desiccation, comparing with bryophytes already studied and described as desiccation tolerant. Moreover, this integrated study aims to identify DT processes/mechanisms that are common across desiccation tolerant plant species. Photosynthesis is a very sensitive indicator of desiccation. The measurement of the oxygen production rate, coupled with chlorophyll a fluorescence, allowed to follow the photosynthetic response through non-invasive techniques (Chapter 2). Examining the metabolic response to desiccation, we aimed to establish if F. antipyretica was DT and whether the recovery of this species was mainly determined by the extent or by the rate of dehydration, or by both. Our findings showed that the metabolic response of F. antipyretica to desiccation, both under field and laboratory conditions, is consistent with a DT pattern. It was concluded that dehydration must proceed slowly for the bryophyte to regain its predesiccation state following rehydration. This was further confirmed in field-desiccated samples which showed a similar recovery pattern as slow dehydration. This physiological study of a widely distributed aquatic bryophyte periodically subjected to desiccation contributed to improve our knowledge about dehydration rate in bryophyte survival. The metabolic impairment observed during dehydration led to an increase in reactive oxygen species (ROS) production (Chapter 3). It was found that managing oxidative stress is one critical aspect for surviving desiccation. Although ROS production in response to desiccation/rehydration has been determined in terrestrial bryophytes it was not investigated in aquatic bryophytes. In addition, there were no published studies examining the impact of dehydration rate on ROS production in bryophytes previously subjected to desiccation and no information on the impact of drying rate on its production. Since it was determined that dehydration rate is fundamental for surviving DT, we investigated whether this response included an oxidative burst sensitive to dehydration rate using an innovative approach combining ROS-specific probes and confocal microscopy. The response was a very high ROS production under fast dehydration whereas under slow dehydration was almost absent. ROS react with cellular constituents, such as protein and lipids, leading to damage and, thus, affecting directly cell survival. After observing the effect of dehydration rate on ROS production, the next step was to test if the drying rate affected membrane damage (Chapter 4). We measured lipid peroxidation as well as cation dynamics and conductivity measurements to assess membrane damage and permeability. Since NO as also been associated with DT and a possible role in membrane protection, we measure and discuss the possible roles of its production and action. We also found that the increase in ROS and red autofluorescence can be used in future works in desiccation and drought stress as an indicator for detecting membrane damage and cell rupture. During dehydration, cell water relations change occurring in some cases osmotic adjustment through sucrose accumulation. Sucrose has an important role in DT by preventing denaturation of macromolecules and slowing down damaging reactions with ROS. We investigated how contrasting (fast and slow) dehydration rates change cell water relations and sucrose content in an aquatic bryophyte and if those changes can explain the requirement of slow dehydration to induce DT (Chapter 5). The characteristics of the bryophytes cell walls appear to change under fast dehydration, allowing it to become more elastic which probably allows to maintain a functional metabolism to lower water potentials. Sucrose also increases under fast dehydration which can be an attempt to minimize damage when time for a more effective protection is not available. The theory for DT was based in a constitutive protection mechanism that would allow the bryophyte to tolerate and protect the structures during desiccation, coupled with a repairbased mechanism upon rehydration which would repair damage that accumulated during the dried state. This would be controlled at the transcriptional level by accumulation of mRNA that would be activated during rehydration. However, recently the study of proteomes in bryophytes in response to dehydration suggests another approach to DT. We investigated the effect of fast and slow drying rates on the protein profiles, considering both dehydration and rehydration (Chapter 6). After fast dehydration, the proteome profiles of F. antipyretica are very similar to control. However, rehydration following fast dehydration leads to loss of almost all proteins, providing evidence that the bryophyte does not have enough time to prepare for desiccation under this dehydration regime. Nevertheless, under slow dehydration there are substantial changes in the proteome profile, both during dehydration and rehydration which might indicate an induction of DT mechanisms under these circumstances. The development of desiccation tolerance mechanisms that involved the accumulation of specific proteins during cycles of dehydration/rehydration allowed land colonization by early bryophyte ancestors. The basis for such tolerance relies on common patterns of protein expression and metabolic adjustments which are very similar even in bryophytes from very distinct habitats. During dehydration, photosynthesis shuts down, high levels of soluble sugars occur in the cytoplasm, defence proteins increase, cytoskeleton is disassembled and sugar metabolism enzymes are up-regulated. After rehydration, photosynthesis restart, cytoskeleton is re-assembled, high levels of: soluble sugars, sugar metabolism enzymes and defence proteins are maintained. The main conclusion suggested by this work is that DT at the cellular level, namely at the level of the molecular mechanisms, is similar among bryophytes independently of their preferred habitat. Furthermore, it states that DT is induced by slow dehydration rate being eventually controlled to some point by the morphology, being the determinant factor in the adaptation of bryophytes to each habitat and desiccation conditions.
A água é o elemento mais importante para a Vida na Terra. Durante a ocupação do meio terrestre, as primeiras plantas enfrentaram um ambiente extremamente árido levandoas à dessecação, um estado no qual os tecidos perdem praticamente toda a água. Desta forma, foram-se desenvolvendo mecanismos de tolerância à dessecação (DT, do inglês desiccation tolerance) nas plantas, graças aos quais estas podem submeter-se ao estado de dessecação e regressar a um funcionamento normal após a reidratação. Atualmente, os organismos que apresentam DT incluem membros de taxa muito distintos, tais como micróbios, briófitos, líquenes, plantas vasculares e animais. No entanto, a DT é mais frequente nos líquenes e nos briófitos. Os investigadores têm estudado os mecanismos de DT na esperança de descobrir novos genes que possam ser transferidos por meio da biotecnologia para espécies vegetais de interesse agrícola, aumentando sua tolerância à seca. Na região do Mediterrâneo, a espécie aquática de briófito Fontinalis antipyretica é periodicamente exposta à dessecação, em riachos que perdem a água durante a estação seca. Observações no campo sugerem mecanismos de DT neste briófito aquático. O objetivo principal desta Tese é estudar a DT através da combinação de técnicas fisiológicas, bioquímicas e moleculares num briófito proveniente de um habitat que normalmente não está sujeito à dessecação, comparando com briófitos já estudados e descritos como tolerantes à dessecação. Além disso, este estudo integrado pretende identificar processos/mecanismos de DT que sejam comuns nas diversas espécies vegetais tolerantes à dessecação. A fotossíntese é um indicador muito sensível à dessecação. A resposta fotossintética foi seguida por meio de técnicas não-invasivas através da medição da taxa de produção de oxigénio, acoplado com a fluorescência da clorofila a (Capítulo 2), do briófito F. antipyretica de modo a determinar o grau de DT. Examinou-se a resposta metabólica à dessecação e de que forma ocorre a recuperação, se é determinada principalmente pela extensão ou a taxa de desidratação, ou por ambas. Os nossos dados mostraram que a resposta metabólica de F. antipyretica à dessecação, tanto sob condições de campo como em laboratório, é consistente com um padrão de DT. No entanto, a desidratação deve desenrolar-se lentamente para o briófito recuperar totalmente o seu estado inicial após reidratação. Isto foi confirmado em amostras dessecadas no campo as quais possuem um padrão de recuperação semelhante ao das amostras desidratadas lentamente. Este estudo fisiológico de um briófito aquático com distribuição global contribuiu para melhorar o nosso conhecimento sobre o papel desempenhado pela taxa de dessecação na sobrevivência dos briófitos.Durante a desidratação, o normal funcionamento metabólico fica comprometido, originando um aumento do stresse oxidativo, especialmente na produção de espécies reativas de oxigénio (ROS, do inglês reactive oxygen species) (Capítulo 3). Desta forma, a manutenção de níveis aceitáveis de stresse oxidativo que permitam o funcionamento celular é um aspeto crítico na sobrevivência à dessecação. Embora a produção de ROS em resposta à dessecação / reidratação tenha sido observada em briófitos terrestres, o mesmo não sucedeu em briófitos aquáticos. Além disso, não existiam estudos publicados que relacionassem o impacto da taxa de desidratação na produção de ROS em briófitos previamente submetidos a dessecação. Uma vez que a taxa de desidratação é fundamental para sobreviver à dessecação, investigámos se essa resposta incluiu um burst oxidativo sensível a taxa de desidratação utilizando uma abordagem inovadora que combina sondas específicas para ROS e microscopia confocal. Após reidratação, observou-se uma elevada produção de ROS em amostras desidratadas rapidamente, enquanto nas desidratadas lentamente essa produção era quase ausente. As ROS reagem com componentes celulares, tais como proteínas e lípidos, levando a danos celulares, afetando, desta forma, a sobrevivência celular. Depois de observar o efeito da velocidade de desidratação na produção de ROS, o passo seguinte foi testar como a taxa de desidratação afetava a estrutura e a estabilidade membranares (Capítulo 4). Através da quantificação de peroxidação lipídica, da dinâmica de catiões e das medições de condutividade, foram avaliados os danos e permeabilidade membranares. Dado que o óxido nítrico também foi associado com DT, tendo um possível papel na proteção da membrana, procedemos à sua quantificação e discutimos os possíveis papéis da sua produção e ação. Após a reidratação, observou-se um aumento de ROS e da autofluorescência vermelha os quais podem ser usados em futuros trabalhos na dessecação e stresse hídrico como um indicador de danos e rutura da membrana celular. Durante a desidratação, as relações hídricas das células alteram-se ocorrendo, em alguns casos, ajustamento osmótico através da acumulação de sacarose. A sacarose tem um papel importante na DT, Procedeu-se à investigação de como duas taxas de desidratação contrastantes (rápida e lenta) alteram as relações hídricas e o teor de sacarose das células de briófitos aquáticos e se essas alterações podem explicar a necessidade de desidratação lenta para induzir DT (Capítulo 5). As características das paredes celulares briófitos parecem sofrer alterações durante a desidratação rápida, permitindo à parede tornar-se mais elástica e que provavelmente permite a manutenção de um metabolismo funcional até potenciais hídricos mais reduzidos. O aumento de sacarose durante a desidratação rápida poderá ser uma tentativa de minimizar os danos quando não existe tempo para estabelecer uma proteção mais efetiva. A teoria de DT foi baseada num mecanismo de proteção constitutiva que permitiria ao briófito proteger as estruturas celulares durante a dessecação, juntamente com um mecanismo baseado em reparação após reidratação, que permitiria reparar os danos que se acumularam durante o estado de dessecação. O controlo de síntese proteica seria efetuado ao nível transcripcional através da acumulação de mRNA sendo a síntese de proteínas ativada durante a reidratação. No entanto, recentemente, o estudo de proteomas em briófitos em resposta à desidratação sugere uma nova abordagem para a DT. Procedeuse à investigação do efeito de taxas de desidratação lenta e rápida para observar os perfis proteicos, considerando ambos os processos de desidratação e reidratação (Capítulo 6). Após a desidratação rápida, os perfis de proteoma de F. antipyretica são muito semelhantes aos do controlo sem stresse. No entanto, aquando da reidratação após desidratação rápida observou-se a perda quase total das proteínas, fornecendo evidências de que o briófito não tem tempo suficiente para se preparar para a dessecação sob esta taxa de desidratação. Contudo, sob desidratação lenta ocorrem alterações substanciais nos perfis de proteoma, tanto durante a desidratação como na reidratação, o que pode indicar uma indução de mecanismos de DT nestas circunstâncias. O desenvolvimento de mecanismos de tolerância à dessecação, envolvendo a acumulação de proteínas específicas durante os ciclos de desidratação/reidratação, poderá ter permitido a colonização do meio terrestre pelos primeiros briófitos. A base para tal tolerância depende de padrões comuns de expressão de proteínas, bem como de ajustes metabólicos, os quais são muito semelhantes em briófitos de habitats distintos. Durante a desidratação, a fotossíntese é interrompida, ocorre o aumento dos níveis de açúcares solúveis, aumentam as proteínas de defesa, o citoesqueleto é desmontado e enzimas do metabolismo glicolítico aumentam. Após a reidratação, a fotossíntese reinicia, o citoesqueleto é remontado, e são mantidos elevados níveis de açúcares solúveis, enzimas do metabolismo glicolítico e proteínas de defesa. A principal conclusão sugerida por este trabalho é de que a DT ao nível celular, nomeadamente ao nível dos mecanismos moleculares, é semelhante nos diferentes briófitos independentemente do seu habitat. Além disso, estabelece que a DT é induzida por desidratação lenta sendo esta controlada até certo ponto pela morfologia do briófito, tornando-se um fator determinante na adaptação dos briófitos a cada habitat e às condições de dessecação.
Descrição: Tese de doutoramento, Biologia (Fisiologia e Bioquímica), Universidade de Lisboa, Faculdade de Ciências, 2013
URI: http://hdl.handle.net/10451/10498
Aparece nas colecções:FC - Teses de Doutoramento

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
ulsd067278_td_Ricardo_Carvalho.pdf5,59 MBAdobe PDFVer/Abrir

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.