Universidade de Lisboa Repositório da Universidade de Lisboa

Repositório da Universidade de Lisboa >
Faculdade de Ciências (FC) >
FC - Dissertações de Mestrado >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10451/1493

Título: Carbon monoxide and brain sequestration of Plasmodium berghei ANKA in experimental cerebral malaria
Autor: Pena, Ana Catarina Dias
Orientador: Pamplona, Ana
Zilhão, Rita Maria Pulido Garcia
Palavras-chave: Biologia celular
Malária cerebral
Células T
Teses de mestrado
Issue Date: 2009
Resumo: Resumo alargado em português disponível no documento
Malaria is a major infectious disease worldwide, causing ~1 million deaths each year due to severe complications, one of the most lethal being cerebral malaria (CM). Thereby, understanding CM pathogenesis is of vital importance for developing effective therapies against it. The experimental cerebral malaria (ECM) model of C57BL/6 mice infected with P. berghei ANKA (PbA) shares many similarities with human CM. However, whereas in humans a critical event is sequestration of Plasmodium-infected red blood cells (iRBCs) in the brain microvasculature, in rodents is mostly leukocyte sequestration that occurs. Thereby, the pathologic significance of iRBCs brain sequestration during ECM is controversial and remains to be clarified. Recently, it was shown that heme-oxygenase-1 (HO-1) plays a crucial role in protection against ECM, which appears to be mediated by carbon monoxide (CO) production, an end-product of its enzymatic activity. In fact, administration of CO by inhalation rescues all C57BL/6 PbA-infected mice from developing ECM. The present study shows that CO protection comprises the reduction of iRBC brain sequestration in infected mice, supporting the importance of this process in ECM pathogenesis and the relevance of C57BL/5 PbA-infected mouse model to study CM. Moreover, our results indicate that CO has a therapeutic potential as a molecule with anti-inflammatory and anti-chemotaxis effects. We also demonstrate that CORM-2, a CO-relasing molecule (CORM-2), mimics CO protection against ECM, suppressing neuroinflammation and parasite sequestration in the brain. Importantly, CORM-2 does not induce formation of carboxyhemoblogin, circumventing CO inhalation toxicity. Moreover, CORM-2 inhibits platelet aggregation and loss of RBC deformability, which likely contributes to prevent disease development. Additionally, CORM-2 also leads to an arrest in parasite load, which origin and relevance is not clear. Altogether, these results indicate that CO-RMs seem to represent a novel class of drugs with therapeutic potential to protect the host from cerebral malaria.
Descrição: Tese de mestrado, Biologia (Biologia Celular e Biotecnologia), 2009, Universidade de Lisboa, Faculdade de Ciências
URI: http://catalogo.ul.pt/F/?func=item-global&doc_library=ULB01&type=03&doc_number=000574405
Appears in Collections:FC - Dissertações de Mestrado

Files in This Item:

File Description SizeFormat
21235_ulfc080678_tm.pdf3,4 MBAdobe PDFView/Open

Please give feedback about this item
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  © Universidade de Lisboa / SIBUL
Alameda da Universidade | Cidade Universitária | 1649-004 Lisboa | Portugal
Tel. +351 217967624 | Fax +351 217933624 | repositorio@reitoria.ul.pt - Feedback - Statistics
Promotores do RCAAP   Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência PO Sociedade do Conhecimento (POSC) Portal oficial da União Europeia