Universidade de Lisboa Repositório da Universidade de Lisboa

Repositório da Universidade de Lisboa >
Faculdade de Ciências (FC) >
FC - Teses de Doutoramento >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10451/1671

Title: Approximation of hyperbolic conservation laws
Authors: Correia, Joaquim M. C., 1963-
Advisor: LeFloch, Philippe G.
Dias, João Paulo Carvalho, 1933-
Keywords: Análise Matemática
Teses de doutoramento
Issue Date: 2007
Abstract: In a first part, we study the zero diffusion-dispersion limit for a class of nonlinear hyperbolic and multi-dimensional conservation laws regularized in a fashion similar to to the Benjamin-Bona-Mahony-Burgers (BBMB) and Korteweg-deVries-Burgers (KdVB) equations. We establish the strong convergence toward classical entropy solutions by relying DiPerna's theory of entropy measure-valued solutions. Optimal conditions are determined for the balance between diffusion and dispersion coefficients. This allows us to propose criteria for the possible existence or non-existence of nonclassical solutions in the sense investigated by LeFloch. Our analysis distinguishes between several assumptions on the diffusion, the dispersion, and the flux-function and emphasize drastic differences between the BBMB and the KdVB models; distinct convergence behaviors are put in evidence and various energy-type arguments are discussed. In the second part, we study the Riemann problem for nonlinear hyperbolic systems of conservation laws whose flux-function is solely Lipschitz continuous. Typical examples arise in the modelling of multi-phase flows and of elasto-plastic materials. To extend Lax's theory, the main difficulty is to handle possibly discontinuous wave speeds. We revisit certain fundamental notions such as the strict hyperbolicity, the genuine nonlinearity and the entropy inequalities. Our proofs rely on a generalized calculus for Lipschitz continuous mappings and the related Filippov's theory of ordinary differential equations with discontinuous coefficients. We identify here several new features arising in discontinuous solutions of the Riemann problem.
Description: Tese de doutoramento em Matemática (Análise Matemática), apresentada à Universidade de Lisboa através da Faculdade de Ciências, 2008
URI: http://hdl.handle.net/10451/1671
Appears in Collections:FC - Teses de Doutoramento

Files in This Item:

File Description SizeFormat
3646_TD.pdf639.74 kBAdobe PDFView/Open
Statistics
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  © Universidade de Lisboa / SIBUL
Alameda da Universidade | Cidade Universitária | 1649-004 Lisboa | Portugal
Tel. +351 217967624 | Fax +351 217933624 | repositorio@reitoria.ul.pt - Feedback - Statistics
DeGóis
  Estamos no RCAAP Governo Português separator Ministério da Educação e Ciência   Fundação para a Ciência e a Tecnologia

Financiado por:

POS_C UE