Universidade de Lisboa Repositório da Universidade de Lisboa

Repositório da Universidade de Lisboa >
Faculdade de Farmácia (FF) >
FF - Teses de Doutoramento >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10451/2232

Título: In silico prediction of human oral bioavailability : artificial neural networks and physiologically based models
Autor: Paixão, Paulo Jorge Pereira Alves, 1974-
Orientador: Morais, José Augusto Guimarães, 1942-
Gouveia, Luís Filipe Baptista Pleno de, 1963-
Palavras-chave: Farmacocinética
Biofarmácia
Teses de doutoramento - 2010
Issue Date: 2010
Resumo: Foram criados vários modelos QSAR com o objectivo de prever a biodisponibilidade oral de fármacos em humanos. Assim, criaram-se redes neuronais artificiais (ANN) para a previsão da permeabilidade aparente (Papp) em células CACO-2; ANN para a previsão da razão da concentração entre o sangue e o plasma (Rb); e ANN para a previsão da clearance intrínseca (CLint) determinada em suspensões de hepatócitos humanos. Estes modelos foram utilizados, juntamente com estimativas da solubilidade dos fármacos no pH do tracto gastrointestinal, como parâmetros para caracterizar o comportamento de fármacos num modelo de absorção de base fisiológica. A capacidade preditiva do modelo foi testada em 164 fármacos divididos por 4 classes de proveniência de dados: (i) dados de Papp e CLint obtidos in vitro; (ii) dados de CLint obtidos in vitro; (iii) dados de Papp obtidos in vitro e (iv) dados de Papp e CLint obtidos in silico. A solubilidade foi sempre estimada in silico. A avaliação dos resultados mostrou uma boa capacidade preditiva quando foram utilizados apenas dados in vitro para a Papp e a Clint, apresentado 82% das previsões correctas num intervalo absoluto de ± 20%. Com a adição de parâmetros de origem in silico, observou-se uma redução da capacidade preditiva do modelo, principalmente considerando os valores in silico de CLint. Assim, e num cenário de previsão com a utilização de estimativas in silico do valor de Papp e Clint, apenas 46% das previsões apresentaram valores correctos no intervalo absoluto de ±20%. No entanto, esse valor subiu para 66% quando considerado um intervalo absoluto de ±35%, compatível com uma previsão qualitativa da biodisponibilidade absoluta. A abordagem apresentada pode ser uma ferramenta útil para a previsão e simulação durante o processo de desenvolvimento de novos fármacos, fornecendo quer estimativas da biodisponibilidade oral quer uma interpretação mecanicista dos seus passos limitantes.
With the purpose to predict the human oral bioavailability, various QSAR models were developed, namely an artificial neural network (ANN) to predict apparent permeabilities (Papp) in CACO-2 cells; an ANN to predict the drug bloodto- plasma concentration ratio (Rb); and an ANN to predict intrinsic clearance (CLint) obtained in human hepatocytes suspensions. These QSAR models were introduced, together with estimates of the drug solubility at the gastrointestinal pH, as drug related parameters in a physiologically-based pharmacokinetic model of absorption in order to estimate the human absolute bioavailability. The global model predictive ability was tested in 164 drugs divided in four levels of input data: (i) in vitro data for both Papp and CLint; (ii) in vitro data for CLint only; (iii) in vitro data for Papp only and (iv) in silico data for both Papp and CLint. In all scenarios, solubility was estimated in silico. Evaluation of the model performance resulted in excellent predictive abilities when in vitro data for both Papp and CLint was used with 82% of drugs with bioavailability predictions within a ±20% interval of the correct value. Model performance was reduced when in silico estimated parameters were introduced, especially when CLint is considered. Performance of the model using in silico data for both Papp and CLint provided only 46% of drugs with bioavailability predictions within a ±20% acceptance interval. However, 66% of drugs in the same scenario resulted in bioavailability predictions within a ±35% interval, which indicates that a qualitative prediction of the absolute bioavailability is still possible. This model is a valuable tool to estimate a fundamental pharmacokinetic parameter, using data typically collected in the drug discovery environment, providing also mechanistic information of the limiting bioavailability steps of the drug.
Descrição: Tese de doutoramento, Farmácia (Biofarmácia e Farmacocinética), Universidade de Lisboa, Faculdade de Farmácia, 2010.
URI: http://hdl.handle.net/10451/2232
Appears in Collections:FF - Teses de Doutoramento

Files in This Item:

File Description SizeFormat
ulsd058708_Paulo_Paixao.pdf3,02 MBAdobe PDFView/Open
Statistics
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  © Universidade de Lisboa / SIBUL
Alameda da Universidade | Cidade Universitária | 1649-004 Lisboa | Portugal
Tel. +351 217967624 | Fax +351 217933624 | repositorio@reitoria.ul.pt - Feedback - Statistics
DeGóis
  Estamos no RCAAP Governo Português separator Ministério da Educação e Ciência   Fundação para a Ciência e a Tecnologia

Financiado por:

POS_C UE