Utilize este identificador para referenciar este registo: http://hdl.handle.net/10451/25946
Título: Characterization of Plasmodium methionine metabolism key enzyme
Autor: Marreiros, Maria Inês Moreira Oliveira Leite
Orientador: Luis, Vanessa Alexandra Zuzarte
Silva, Anabela Rosa Bernardes dos Santos da,1960-
Palavras-chave: Malária
Plasmodium
Interação patogénio-hospedeiro
Metabolismo da metionina
ROS
Teses de mestrado - 2016
Data de Defesa: 2016
Resumo: Malaria is a disease caused by protozoan parasites of the genus Plasmodium that are transmitted to humans by infected female Anopheles mosquitoes. Despite countless efforts toward eradication malaria still remains one of the most prevalent infectious diseases, constituting a major public health concern. The available antimalarial drugs are insufficient to control and eradicate malaria, mostly due to the emergence of drug-resistant parasites. Thus, the development of novel intervention strategies is critical to achieve eradication. As an obligatory intracellular pathogen, Plasmodium establishes close interactions with its host that are crucial to ensure parasite development and survival, one of such is the methionine metabolism. Methionine is an essential amino acid and, as for most living organisms, Plasmodium lacks the ability to synthesize methionine de novo. During the blood-stage of infection Plasmodium obtains methionine mainly through haemoglobin digestion. However, how Plasmodium obtains methionine during the liver-stage and how the parasite modulates the host cells in order to scavenge this essential amino acid is still unknown. The first step of methionine cycle is the synthesis of S-adenosylmethionine (SAMe) through a reaction catalyzed by the enzyme SAMe synthetase (SAMS). SAMe is a key metabolite in the methionine metabolism being the main biological donor of methyl groups for transmethylation reactions. SAMe is also a key intermediate in the transsulfuration pathway generating homocysteine (Hcy) which is metabolized into glutathione (GSH), being the last step of this pathway catalysed by glutathione synthetase (GS). GSH is a powerful antioxidant that in Plasmodium acts as one of the primary lines of the defense against the damage caused by reactive oxygen species (ROS), ensuring parasite survival. In this work we have explored the role of Plasmodium enzymes responsible for SAMe and GSH synthesis throughout its life cycle and in particular during the liver-stage of infection. The liver is a particular organ in the metabolism of methionine, namely in SAMe-dependent transmethylation reactions and in glutathione synthesis and storage. Thus, we hypothesized that while replicating inside hepatocytes, Plasmodium relies on its host to ensure a sufficient supply of these crucial metabolites. The data obtained in this study suggest that: 1) Plasmodium does not rely on its own SAMS enzyme while developing inside hepatocytes; 2) that the inhibition of SAMS activity during the blood-stage of infection leads to a low parasitemia, preventing the onset of cerebral malaria and 3) the deletion of GS-encoding gene results in the arrest at the oocyst stage, preventing transmission between the mosquito vector and the mammalian host. A detailed knowledge of Plasmodium methionine pathway provides promising tools for the design and development of novel antimalarial drugs.
A malária é uma doença causada por parasitas protozoários pertencentes ao género Plasmodium que são transmitidos aos humanos por mosquitos fêmea do género Anopheles. Apesar dos inúmeros esforços realizados na tentativa de erradicar a malária esta permanece ainda uma das doenças parasíticas mais prevalentes, constituindo um problema de saúde público. Os anti-maláricos disponíveis são insuficientes no controlo e erradicação da malária, devido sobretudo ao aparecimento de parasitas resistentes. Além disso, o escasso conhecimento acerca da biologia do parasita bem como das interações que este estabelece com o hospedeiro constituem uma barreira na luta contra a malária. Assim, o desenvolvimento de novas estratégias de intervenção torna-se crucial para conseguir a erradicação. Plasmodium é um patogénio intracelular obrigatório e, como tal, as interações que estabelece com o seu hospedeiro são essenciais para garantir o seu desenvolvimento e sobrevivência, nomeadamente as que estabelece ao nível do metabolismo da metionina. A metionina é um aminoácido essencial pelo que, tal como na maioria dos organismos, Plasmodium não tem capacidade para a sintetizar de novo. Durante a fase sanguínea Plasmodium obtém metionina maioritariamente através da degradação de hemoglobina. Contudo, os mecanismos que Plasmodium utiliza para obter metionina durante a fase hepática, bem como para modular a célula hospedeira de modo a garantir um fornecimento suficiente deste aminoácido são ainda desconhecidos. O primeiro passo do ciclo da metionina consiste na síntese de S-adenosilmetionina (SAMe) numa reação catalisada pela enzima SAMe sintetase (SAMS). A SAMe é um metabolito essencial na via metabólica da metionina sendo o maior dador biológico de grupos metilo. A SAMe é ainda um importante intermediário na via da transsulfuração sendo convertida em homocisteína e subsequentemente metabolizada em glutationo, sendo o último passo desta via catalisado pela glutationo sintetase (GS). O glutationo é um antioxidante que em Plasmodium atua como uma das primeiras linhas de defesa contra espécies oxidativas. Neste trabalho explorámos o papel das enzimas de Plasmodium responsáveis pela síntese de SAMe e glutationo ao longo do seu ciclo de vida, com particular ênfase na fase hepática da infeção. O fígado tem um papel preponderante no metabolismo da metionina, nomeadamente nas reações de transmetilação dependentes de SAMe bem como na regulação da síntese e armazenamento do glutationo. Assim, a hipótese que propusemos testar é que enquanto replica no interior do hepatócito Plasmodium depende do hospedeiro para garantir a obtenção destes metabolitos essenciais. Os resultados obtidos neste estudo demonstram que: 1) durante o seu desenvolvimento no fígado Plasmodium não depende da atividade da sua enzima SAMS; 2) a inibição da atividade da enzima SAMS durante a fase sanguínea da infeção resulta numa redução da parasitémia, prevenindo o aparecimento de malária cerebral e ainda que; 3) a deleção do gene que codifica para a enzima GS inibe o desenvolvimento dos esporozoítos, bloqueando assim a transmissão entre o vetor e o hospedeiro mamífero. Assim, um conhecimento detalhado do metabolismo da metionina em Plasmodium fornece ferramentas promissoras para o desenvolvimento de novos anti-maláricos.
Descrição: Tese de mestrado, Biologia Molecular e Genética, Universidade de Lisboa, Faculdade de Ciências, 2016
URI: http://hdl.handle.net/10451/25946
Designação: Mestrado em Biologia Molecular e Genética
Aparece nas colecções:FC - Dissertações de Mestrado

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
ulfc120725_tm_Maria_Inês_Marreiros.pdf2,03 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.