Universidade de Lisboa Repositório da Universidade de Lisboa

Repositório da Universidade de Lisboa >
Faculdade de Ciências (FC) >
FC - Teses de Doutoramento >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10451/3124

Título: Telomere biology in metazoa
Autor: Gomes, Nuno Miguel Veiga
Orientador: Shay, Jerry W., 1945-
Soares, Eduardo Ducla, 1944-
Palavras-chave: Evolução (Biologia)
Teses de doutoramento - 2011
Issue Date: 2011
Resumo: Telomerase, the enzyme that maintains telomeres, is absent from most adult human somatic cells, producing a progressive telomere shortening that limits the proliferative potential of primary human cell cultures (Shay and Wright 2007). This programmed telomere shortening, replicative aging, functions as a tumor suppressor program that generates a barrier for the outgrowth of tumors. Remarkably, this telomere tumor suppressor program is not conserved in laboratory rats and mice, which have long telomeres and constitutive telomerase (Sherr and DePinho 2000; Wright and Shay 2000). The present study examines over 60 mammalian species to determine the phylogenetic distribution of the telomere tumor suppressor pathway. Phylogeny based statistical analysis demonstrates that telomere length inversely correlates with lifespan but not body size, while telomerase expression inversely correlates with body size but not lifespan. The ancestral mammalian phenotype was determined to have short telomeres and repressed telomerase. At least 5-7 independent times in different orders smaller, shorter lived species changed to having long telomeres and expressing telomerase, suggesting tradeoffs between the advantages and drawbacks of using replicative aging as a tumor suppression mechanism. We show that one advantage is consistent with reducing the energetic/cellular costs of specific oxidative protection mechanism needed to maintain short telomeres. We propose that the telomere tumor suppressor pathway represents an initial adaptation to the increased mutational load of homeothermy by ancestral mammals, has adaptive advantage in large and long-lived animals, but has been abandoned by many species. These observations resolve a longstanding confusion about the use of telomeres in humans and mice, support a role for telomere length in limiting lifespan, provide a critical framework for interpreting studies of the role of oxidative protection in the biology of aging, and identify which mammals can be used as appropriate model organisms for the study of the role of telomeres in human cancer and aging.
Descrição: Tese de doutoramento, Engenharia Biomédica e Biofísica, Universidade de Lisboa, Faculdade de Ciências, 2011
URI: http://hdl.handle.net/10451/3124
Appears in Collections:FC - Teses de Doutoramento

Files in This Item:

File Description SizeFormat
ulsd060284_td_Nuno_Gomes.pdf3,75 MBAdobe PDFView/Open

Please give feedback about this item
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  © Universidade de Lisboa / SIBUL
Alameda da Universidade | Cidade Universitária | 1649-004 Lisboa | Portugal
Tel. +351 217967624 | Fax +351 217933624 | repositorio@reitoria.ul.pt - Feedback - Statistics
Promotores do RCAAP   Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência PO Sociedade do Conhecimento (POSC) Portal oficial da União Europeia