Please use this identifier to cite or link to this item:
Title: Legendrian varieties and quasi-ordinary hypersurfaces
Authors: Araújo, António Manuel Bandeira Barata Alves de, 1972-
Orientador: Neto, Orlando, 1960-
Keywords: Espacos de moduli
Geometria algébrica
Limites (Matemática)
Variedades (Matemática)
Teses de doutoramento - 2011
Issue Date: 2011
Abstract: This thesis is a study of the Legendrian Varieties that are conormals of quasi-ordinary hypersurfaces. In the first chapter we study the analytic classification of the Legendrian curves that are the conormal of a plane curve with a single Puiseux pair. Let m,n be the set of Legendrian curves that are the conormal of a plane curve with a Puiseux pair (m, n), where g.c.d.(m, n) = 1 and m > 2n, with semigroup as generic as possible. We show that the quotient of m,n by the group of contact transformations is a Zariski open set of a weighted projective space. The main tool used in the proof of this theorem is a classification/construction theorem for contact transformation that has since proved useful in other instances. In the second chapter we calculate the limits of tangents of a quasi-ordinary hypersurface. In particular, we show that the set of limits of tangents is, in general, a topological invariant of the hypersurface. In the third chapter we prove a desingularization theorem for Legendrian hypersurfaces that are the conormal of a quasi-ordinary hypersurface. One of the main ingredients of the proof is the calculation of the limits of tangents achieved in chapter two.
Description: Tese de doutoramento, Matemática (Geometria e Topologia), Universidade de Lisboa, Faculdade de Ciências, 2011
Appears in Collections:FC - Teses de Doutoramento

Files in This Item:
File Description SizeFormat 
ulsd61005_td_Antonio_Araujo.pdf1,11 MBAdobe PDFView/Open

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.