Utilize este identificador para referenciar este registo: http://hdl.handle.net/10451/4060
Título: Tolerance of young (Ceratonia siliqua L.) carob rootstock to NaCl
Autor: Correia, P.J.
Gama, F.
Pestana, M.
Martins-Loução, M. A.
Palavras-chave: Biomass
Ceratonia siliqua
Leaf nutrients
Models
Salinity
Salt tolerance index
Data: 2010
Editora: Elsevier
Citação: Agricultural Water Management 97 (2010) 910–916
Resumo: One-year-old carob (Ceratonia siliqua L.) rootstock was grown in fertilised substrate to evaluate the effects of NaCl salinity stress. The experiment consisted of seven treatments with different concentrations of NaCl in the irrigation water: 0 (control), 15, 30, 40, 80, 120 and 240 (mmol L 1), equivalent to electrical conductivities of 0.0, 1.5, 2.9, 3.9, 7.5, 10.9 and 20.6 dS m 1, respectively. Several growth parameters were measured throughout the experimental period. At the end of the experiment, pH, extractable P and K, and the electrical conductivity of the substrate were assessed in each salinity level. On the same date, the mineral composition of the leaves was compared. The carob rootstock tolerated 13.4 dS m 1 for a period of 30 days but after 60 days the limit of tolerance was only 6.8 dS m 1. Salt tolerance indexes were 12.8 and 4.5 for 30 and 60 days, respectively. This tolerance to salinity resulted from the ability to function with concentrations of Cl and Na+ in leaves up to 24.0 and 8.5 g kg 1, respectively. Biomass allocation to shoots and roots was similar in all treatments, but after 40 days the number of leaves was reduced, particularly at the larger concentrations (120 and 240 mmol NaCl L 1). Leaves of plants irrigated with 240 mmol NaCl L 1 became chlorotic after 30 days exposure. However, concentrations of N, P, Mg and Zn in leaves were not affected significantly (P > 0.05) by salinity. Apparently, K+ and Ca2+ were the key nutrients affected in the response of carob rootstocks to salinity. Plants grown with 80 and 120 mmol L 1 of NaCl contained the greatest K+ concentration. Na+/K+ increased with salinity, due to an elevated Na+ content but K+ uptake was also enhanced, which alleviated some Na+ stress. Ca2+ concentration in leaves was not reduced under salinity. Salinization of irrigation water and subsequent impacts on agricultural soils are now common problems in the Mediterranean region. Under such conditions, carob seems to be a salt as well as a drought tolerant species.
Peer review: yes
URI: http://dx.doi.org/ doi:10.1016/j.agwat.2010.01.022
http://hdl.handle.net/10451/4060
ISSN: 0378-3774
Aparece nas colecções:MNHN - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
03783774_2010_910_916.pdf490,58 kBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.