Universidade de Lisboa Repositório da Universidade de Lisboa

Repositório da Universidade de Lisboa >
Faculdade de Ciências (FC) >
FC - Artigos em Revistas Internacionais >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10451/4092

Título: Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands
Autor: Pinho, Pedro
Dias, Teresa
Cruz, Cristina
Sim Tang, Y.
Sutton, Mark A.
Martins-Loução, Maria Amélia
Máguas, Cristina
Branquinho, Cristina
Palavras-chave: Agriculture
Atmospheric NH3
Biodiversity loss
Cattle
Ecological indicators
Global change
Spatial analysis
Issue Date: 2011
Citação: Journal of Applied Ecology
Resumo: 1. Atmospheric ammonia (NH3) is one of the main drivers for ecosystem changes world-wide, including biodiversity loss. Modelling its deposition to evaluate its impact on ecosystems has been the focus of many studies. For that, universal indicators are needed to determine and compare the early effects of NH3 across ecosystems. 2. We evaluate the effects of atmospheric NH3 in ecosystems using lichens, which are one of the most sensitive communities at the ecosystem level. Rather than measuring total diversity, we use a functional diversity approach because this is potentially a more universal tool. 3. We evaluated the spatial and temporal patterns of atmospheric NH3 concentrations ([NH3]atm) emitted from a point-source over a 1-year period in a cork oak Mediterranean woodland. We observed a temporal pattern of [NH3]atm, with maximum concentrations during autumn. 4. The distribution of lichen species was c. 90% explained by [NH3]atm. The tolerance of lichen species to atmospheric NH3, based on expert knowledge from literature, was tested for the first time against direct measurements of atmospheric NH3. Most species were well classified, with the exception of Lecanora albella and Chrysothrix candelaris, which were more tolerant than expected. Our updated lichen classification can be used to establish lichen functional groups that respond to atmospheric NH3, and these can be used in other Mediterranean countries. 5. Increasing [NH3]atm led to a complete replacement of oligotrophic by nitrophytic species within 65 m of the NH3 source. The geostatistical analysis of functional diversity variables yielded a spatial model with low non-spatial variance, indicating that these variables can cope robustly with high spatial variation in NH3. 6. Synthesis and applications. Our results support the use of functional diversity variables, such as a lichen diversity value, as accurate and robust indicators of the effects of atmospheric NH3 on ecosystems. The spatial modelling of these indicators can provide information with high spatial resolution about the effects of atmospheric NH3 around point- and diffuse sources. As this methodology is based on functional groups, it can be applied to monitor both the impact of atmospheric NH3 and the success of mitigation strategies
Arbitragem científica: yes
URI: http://dx.doi.org/ doi:10.1111/j.1365-2664.2011.02033.x
http://hdl.handle.net/10451/4092
ISSN: 1365-2664
Appears in Collections:FC - Artigos em Revistas Internacionais

Files in This Item:

File Description SizeFormat
13652664_2011.pdf947,88 kBAdobe PDFView/Open
Restrict Access. You can request a copy!
Statistics
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  © Universidade de Lisboa / SIBUL
Alameda da Universidade | Cidade Universitária | 1649-004 Lisboa | Portugal
Tel. +351 217967624 | Fax +351 217933624 | repositorio@reitoria.ul.pt - Feedback - Statistics
DeGóis
Promotores do RCAAP   Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência PO Sociedade do Conhecimento (POSC) Portal oficial da União Europeia