Universidade de Lisboa Repositório da Universidade de Lisboa

Repositório da Universidade de Lisboa >
Instituto de Educação (IE) >
GI Psicologia da Educação (IE-GIPE) >
IE - GIPE - Artigos em Revistas Internacionais >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10451/4682

Título: Fitting mixtures of linear regressions
Autor: Faria, Susana
Soromenho, Gilda
Palavras-chave: Mixture of linear regressions
Classification EM algorithm
Issue Date: Feb-2010
Editora: Taylor & Francis
Citação: Journal of Statistical Computation and Simulation, Vol. 80, No. 2, February 2010, 201–225
Resumo: In most applications, the parameters of a mixture of linear regression models are estimated by maximum likelihood using the expectation maximization (EM) algorithm. In this article, we propose the comparison of three algorithms to compute maximum likelihood estimates of the parameters of these models: the EM algorithm, the classification EM algorithm and the stochastic EM algorithm. The comparison of the three procedures was done through a simulation study of the performance (computational effort, statistical properties of estimators and goodness of fit) of these approaches on simulated data sets. Simulation results show that the choice of the approach depends essentially on the configuration of the true regression lines and the initialization of the algorithms.
Arbitragem científica: yes
URI: http://hdl.handle.net/10451/4682
ISSN: 1563-5163
Appears in Collections:IE - GIPE - Artigos em Revistas Internacionais

Files in This Item:

File Description SizeFormat
Fitting mixtures of linear regressions.pdf555,66 kBAdobe PDFView/Open
Statistics
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  © Universidade de Lisboa / SIBUL
Alameda da Universidade | Cidade Universitária | 1649-004 Lisboa | Portugal
Tel. +351 217967624 | Fax +351 217933624 | repositorio@reitoria.ul.pt - Feedback - Statistics
DeGóis
  Estamos no RCAAP Governo Português separator Ministério da Educação e Ciência   Fundação para a Ciência e a Tecnologia

Financiado por:

POS_C UE