Utilize este identificador para referenciar este registo: http://hdl.handle.net/10451/4713
Título: Comparison of Mixture and Classification Maximum Likelihood Approaches in Poisson Regression Models
Autor: Faria, Susana
Soromenho, Gilda
Palavras-chave: Simulation study
EM algorithm
Mixture Poisson Regression Models
Classification EM algorithm
Data: Ago-2008
Citação: Compstat 2008-Proceedings in Computational Statistics, Vol. 2
Resumo: In this work, we propose to compare two algorithms to compute maximum likelihood estimators of the parameters of a mixture Poisson regression models. To estimate these parameters, we may use the EM algorithm in a mixture approach or the CEM algorithm in a classification approach. The comparison of the two procedures was done through a simulation study of the performance of these approaches on simulated data sets in a target number of iterations. Simulation results show that the CEM algorithm is a good alternative to the EM algorithm for fitting Poisson mixture regression models, having the advantage of converging more quickly.
Peer review: yes
URI: http://hdl.handle.net/10451/4713
Aparece nas colecções:FPCE - Comunicações

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
artigo15-01.pdf207 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.