Universidade de Lisboa Repositório da Universidade de Lisboa

Repositório da Universidade de Lisboa >
Faculdade de Ciências (FC) >
FC - Dissertações de Mestrado >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10451/5389

Título: Computação paralela na classificação de proteínas sobre a plataforma Cellbe
Autor: Schuenemann, Hermann Pimentel
Orientador: Calha, Mário João Barata
Falcão, André Osório e Cruz de Azerêdo
Palavras-chave: Computação paralela
Bioinformática
Algoritmo de classificação de sequências
Processador multi-núcleo
Cellbe
Teses de mestrado - 2010
Issue Date: 2010
Resumo: Um dos problemas maiores da bioinformática é a previsão de função de uma proteína. A tecnologia existente já permite obter milhões e milhões de sequências a custo muito reduzido, mas a compreensão de sua função dentro dos vários organismos é ainda um grande mistério para a larga maioria de sequências proteicas existentes. A criação de software eficiente que permita analisar bases de dados de proteínas em busca de metadados é também um desafio para os biólogos e uma área de estudo recente para os cientistas da computação, por representar uma alternativa de baixo custo aos métodos de teste em laboratório. Uma metodologia que se propõe analisar estas bases de dados e anotar as proteínas são os Peptide Programs (PepProg), uma metodologia de aprendizagem automática (machine learning) para classificação funcional de sequências biológicas. Esta dissertação de mestrado se propôs a estudar meios de optimizar o desempenho da implementação existente do método PepProg através da construção de uma implementação alternativa que explore a arquitectura do processador CellBE, presente nas consolas Playstation 3 disponibilizadas pelo Departamento de Informática da Universidade de Lisboa. Para explorar os recursos do CellBE, foi necessário primeiro modificar a implementação existente do método PepProg para que pudesse correr instruções do tipo Single Instruction Multiple Data (SIMD). Esta modificação denominada vectorização, é necessária para que os múltiplos núcleos do processador CellBE pudessem ser utilizados, transformando o PepProg num algoritmo paralelo dentro da arquitectura CellBE. Com o estudo realizado, pode-se concluir que as propostas de vectorização sugeridas nesta dissertação não foram suficientes para a construção de um PepProg paralelo mais eficiente, pois o custo da vectorização do algoritmo em tempo de execução provou-se ser tão alto a ponto de não poder ser compensado pela paralelização do algoritmo.
One of the biggest problems on bioinformatics is protein function determination. The existing technology allows the obtaining of millions and millions sequences at very reduced cost, but the understanding of its function inside organisms is still a great mystery for the wide majority of proteomic sequences. The creation of efficient software that allows protein database analyzes in search for metadata is also a challenge for the biologists and an area of recent study for the computation scientists, as it represent a low cost method alternatively to laboratory test methods. A methodology that considers database analysis to write down proteins is the Peptide Programs (PepProg), an automatic learning methodology (machine learning) for functional sorting of biological sequences. This master's degree dissertation studied ways to optimize the existing implementation of the method PepProg by the construction of an alternative implementation that explores CellBE processor architecture, found on Playstation 3 consoles made available by Departamento de Informática of the Universidade de Lisboa. To explore CellBE resources, it was necessary a modification of the existing PepProg implementation to guarantee that only single-instruction multiple-data (SIMD) instructions was present on code. This process, named vectorization, is a prerequisite to allow PepProg program run on CellBE multiple cores in a parallel way. With the accomplished study, it can be concluded that the vectorization methods proposed by this study were not enough for the construction of a more efficient parallel PepProg, because the algorithm vectorization cost in execution time proved to be so high, that the PepProg parallelization gain was not sufficient to compensate the extra computational processing demanded by the vectorization.
Descrição: Tese de mestrado, Informática, Universidade de Lisboa, Faculdade de Ciências, 2010
URI: http://hdl.handle.net/10451/5389
Appears in Collections:FC - Dissertações de Mestrado

Files in This Item:

File Description SizeFormat
ulfc096315_tm_Hermann_Schuenemann.pdf2,6 MBAdobe PDFView/Open
Statistics
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  © Universidade de Lisboa / SIBUL
Alameda da Universidade | Cidade Universitária | 1649-004 Lisboa | Portugal
Tel. +351 217967624 | Fax +351 217933624 | repositorio@reitoria.ul.pt - Feedback - Statistics
DeGóis
  Estamos no RCAAP Governo Português separator Ministério da Educação e Ciência   Fundação para a Ciência e a Tecnologia

Financiado por:

POS_C UE