Universidade de Lisboa Repositório da Universidade de Lisboa

Repositório da Universidade de Lisboa >
Faculdade de Ciências (FC) >
FC - Teses de Doutoramento >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10451/7133

Título: Automated extension of biomedical ontologies
Autor: Pesquita, Cátia,1980-
Orientador: Couto,Francisco José Moreira
Palavras-chave: Bioinformática
Ontologia
Biomedicina
Issue Date: 2012
Resumo: Developing and extending a biomedical ontology is a very demanding process, particularly because biomedical knowledge is diverse, complex and continuously changing and growing. Existing automated and semi-automated techniques are not tailored to handling the issues in extending biomedical ontologies. This thesis advances the state of the art in semi-automated ontology extension by presenting a framework as well as methods and methodologies for automating ontology extension specifically designed to address the features of biomedical ontologies.The overall strategy is based on first predicting the areas of the ontology that are in need of extension and then applying ontology learning and ontology matching techniques to extend them. A novel machine learning approach for predicting these areas based on features of past ontology versions was developed and successfully applied to the Gene Ontology. Methods and techniques were also specifically designed for matching biomedical ontologies and retrieving relevant biomedical concepts from text, which were shown to be successful in several applications.
O desenvolvimento e extensão de uma ontologia biomédica é um processo muito exigente, dada a diversidade, complexidade e crescimento contínuo do conhecimento biomédico. As técnicas existentes nesta área não estão preparadas para lidar com os desafios da extensão de uma ontologia biomédica. Esta tese avança o estado da arte na extensão semi-automática de ontologias, apresentando uma framework assim como métodos e metodologias para a automação da extensão de ontologias especificamente desenhados tendo em conta as características das ontologias biomédicas. A estratégia global é baseada em primeiro prever quais as áreas da ontologia que necessitam extensão, e depois usá-las como enfoque para técnicas de alinhamento e aprendizagem de ontologias, com o objectivo de as estender. Uma nova estratégia de aprendizagem automática para prever estas áreas baseada em atributos de antigas versões de ontologias foi desenvolvida e testada com sucesso na Gene Ontology. Foram também especificamente desenvolvidos métodos e técnicas para o alinhamento de ontologias biomédicas e extracção de conceitos relevantes de texto, cujo sucesso foi demonstrado em várias aplicações.
URI: http://hdl.handle.net/10451/7133
Appears in Collections:FC - Teses de Doutoramento

Files in This Item:

File Description SizeFormat
ulsd_RE1197_td.pdf1,88 MBAdobe PDFView/Open
Statistics
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

  © Universidade de Lisboa / SIBUL
Alameda da Universidade | Cidade Universitária | 1649-004 Lisboa | Portugal
Tel. +351 217967624 | Fax +351 217933624 | repositorio@reitoria.ul.pt - Feedback - Statistics
DeGóis
Promotores do RCAAP   Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência PO Sociedade do Conhecimento (POSC) Portal oficial da União Europeia