Utilize este identificador para referenciar este registo: http://hdl.handle.net/10451/8648
Título: Obstacle type problems in Orlicz-Sobolev spaces
Autor: Teymurazyan, Rafayel, 1983
Orientador: Rodrigues, José Francisco, 1956-
Palavras-chave: Análise matemática
Física matemática
Optimização matemática
Teses de doutoramento - 2013
Data de Defesa: 2013
Resumo: This thesis consists of four chapters. In the first chapter we study the regularity of solutions for a class of elliptic problems in Orlicz-Sobolev spaces. In particular, we see that bounded weak solutions of Au := 􀀀div 􀀀 a(x; jruj)ru _ = f(x); x 2 ; where Ω ⊂ Rn is a bounded domain, for an appropriate a and f are C1 α regular. Using Lewy-Stampacchia inequalities for one obstacle problem we derive C1 α regularity results (both locally and up to the boundary) for the solution of a quasilinear obstacle problem. In the second chapter we prove Lewy-Stampacchia inequalities in abstract form for two obstacles problem and for N-membranes problem. Applying those inequalities we derive C1 α regularity results (both locally and up to the boundary) for A(x)-obstacle problem with two obstacles and for N-membranes problem. As another application of Lewy-Stampacchia inequalities, we study a quasivariational problem related to a stochastic switching game. We prove, that the problem admits at least a maximal and a minimal solution. In the third chapter we extend the regularity of the free boundary of the obstacle problem to a class of heterogeneous quasilinear degenerate elliptic operators (including p(x)-Laplacian). We prove that the free boundary is a porous set and hence has Lebesgue measure zero. We also show that the (n - 1)-dimensional Hausdorff measure of the free boundary is finite (for p(x) > 2), which yields, in particular, that up to a negligible singular set, the free boundary is the union of at most a countable family of C1 hypersurfaces. Finally, in the chapter four of the thesis, after homogenizing the Dirichlet problem for A(x)-Laplacian in Orlicz-Sobolev spaces, we study the homogenization of the A(x)-obstacle problem, then prove convergence of the coincidence sets.
Descrição: Tese de doutoramento, Matemática (Física Matemática e Mecânica dos Meios Contínuos), Universidade de Lisboa, Faculdade de Ciências, 2013
URI: http://hdl.handle.net/10451/8648
Aparece nas colecções:FC - Teses de Doutoramento

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
ulsd65765_td_Rafayel_Teymurazyan.pdf1,31 MBAdobe PDFVer/Abrir

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.