Estudo da utilização espaço-temporal do estuário do Sado pela população residente de roazes (*Tursiops truncatus*), com recurso a um método goniométrico

Margarida Costa

Dissertação

Mestrado em Biologia da Conservação

2015
Estudo da utilização espaço-temporal do estuário do Sado pela população residente de roazes (*Tursiops truncatus*), com recurso a um método goniométrico

Margarida Costa

Dissertação orientada pelo Prof. Doutor Francisco Andrade

Mestrado em Biologia da Conservação

2015
“The happiness of the bee and the dolphin is to exist.
For man it is to know that and to wonder at it.”

Jacques Yves Cousteau
Índice

Agradecimentos ... 2
Resumo………………………………………………………………………………………. 3
Abstract ... 4
Introdução .. 5
Objectivos ... 13
Metodologia ... 14
 A espécie em estudo ... 14
 Área de estudo .. 15
O método goniométrico .. 17
Elaboração de um mapa de aplicabilidade do método goniométrico no estuário do Sado........ 19
 1. Definição do limite de leitura do método goniométrico no interior do estuário e dos ângulos mortos de observação a partir dos pontos de observação ... 19
 2. Definição de zonas de erro na utilização do método goniométrico devido à existência de colinearidade e da distância aos pontos de observação .. 20
 Efeito da colinearidade na aplicabilidade do método goniométrico no interior do estuário e linha costeira adjacente ..22
 Efeito da distância aos pontos de observação na aplicabilidade do método goniométrico no interior do estuário e linha costeira adjacente .. 25
Resultados ..28
 Utilização do estuário por parte dos roazes ... 28
Elaboração de um mapa de aplicabilidade do método goniométrico no estuário do Sado 31
 1. Definição do limite de leitura do método goniométrico no interior do estuário e dos ângulos mortos de observação a partir dos pontos de observação ... 31
 2. Definição de zonas de erro na utilização do método goniométrico devido à existência de colinearidade .. 35
 Efeito da colinearidade na aplicabilidade do método goniométrico no interior do estuário e linha costeira adjacente ..25
 Efeito da distância aos pontos de observação na aplicabilidade do método goniométrico no interior do estuário e linha costeira adjacente .. 40
Mapa de aplicabilidade do método goniométrico no estuário do Sado 42
Discussão ... 48
Considerações finais ... 52
Referências bibliográficas .. 53
Anexo A ... 59
Anexo B ... 60
Agradecimentos

O mestrado de Biologia da Conservação foi o grande culminar destes importantes cinco anos de embrenhamento no ensino superior. Cresci imenso, tanto como aprendiz de Biologia como da imensidão de toda a vida.

O ano final dedicado à tese e a todo o trabalho que a envolveu não teria sido possível sem um importante núcleo de pessoas. A todas elas o meu mais sincero obrigado.

Ao Professor Francisco Andrade, por me aceitar como sua orientada.

À Troianatura pela autorização para explorar os dados obtidos no âmbito do projecto “Monitorização do padrão de ocupação do estuário do Sado pela população residente de roazes (Tursiops truncatus) e interacções com a navegação no estuário”, integrado no Plano de Acção para a salvaguarda e monitorização da população de Roazes no estuário do Sado.

Ao Professor Rui Rebelo por todo o apoio e compreensão dado nos momentos certos, sem si não teria sido possível.

Ao Professor Jorge Palmeirim pela explicação que simplificou o complicado.

À Inês Brito, Carina Silva e Rui Cereja pela ajuda nas saídas de campo e na resolução de todas as dúvidas.

À Patrícia Mota, pela companhia nas horas de telescópio e nas angústias.

Ao Nuno Barreto, obrigado pelas horas de trabalho poupadas.

À Madalena Costa pelos minutos poupados com a sua ajuda.

Aos meus pais, pelos conselhos nas horas difíceis.
Resumo

A falta de informação que ainda existe sobre as populações de roazes-corvineiros (*Tursiops truncatus*) que habitam estuários influencia a compreensão do estatuto vulnerável das mesmas. Este é resultado das ameaças antropogénicas a que estão sujeitas pela localização próxima de zonas urbanas e industrializadas. Existiu assim um esforço de estudo e inovação tecnológica na análise das mudanças ambientais antropogénicas que influenciam as interacções dos organismos com os elementos do seu ambiente. No caso particular dos animais marinhos, a utilização de informação espacial sobre a forma de mapas torna-se essencial pela falta de informação, que muitas vezes existe sobre os seus movimentos e utilização do habitat. O trabalho aqui apresentado tem assim como objectivo a elaboração do mapa de aplicabilidade do método goniométrico no interior do estuário do Sado e linha costeira imediatamente adjacente, usado no estudo da utilização espacial do estuário pela população residente de roazes. Foi assim usado o método goniométrico para observação e posicionamento dos roazes e para definição dos valores limite de leitura no interior do estuário, de ângulos mortos de observação a partir dos pontos de observação e da definição de áreas de incerteza na medição devido à existência de colinearidade inerente ao método e à distância entre os alvos e os pontos de observação, tanto no interior do estuário como na linha costeira imediatamente adjacente. A aplicabilidade do método goniométrico varia a sua eficiência para diferentes zonas do estuário, apresentando valores óptimos para 18% da área de estudo e permitindo confirmar com rigor a utilização diferencial do estuário do Sado pela população residente de roazes, com clara preferência pelo canal Sul e pela zona da Barra (98,6% dos posicionamentos verificados). A aplicabilidade do método será restrita ao limite de leitura do método de dez quilómetros no interior do estuário e limitada pela existência de sete ângulos mortos de observação a partir do Forte de S. Filipe e do terraço do Tróia Design Hotel, de duas áreas de incerteza na recolha de dados devido à existência de colinearidade e de três zonas de incerteza devido à distância aos pontos de observação. O método goniométrico demonstra ainda assim desvantagens, pois apesar de permitir a recolha de dados sobre os alvos à distância, fora da zona de aplicabilidade óptima não permite um posicionamento rigoroso de alvos no estuário, apresentando erros consideráveis segundo a escala da área de estudo amostrada.

Palavras-chave: roazes; *Tursiops truncatus*; estuário do Sado; método goniométrico; utilização do estuário; aplicabilidade do método
Abstract

The lack of information that still exists about populations of bottlenose dolphins (*Tursiops truncatus*) inhabiting estuaries influences the understanding of their vulnerable condition due to the anthropogenic threats they are subjected to by their location near urban and industrialized areas. Thereby there was an effort with studies and technological innovation in the analysis of anthropogenic environmental changes that influence the interactions between organisms and the elements of their environment. In the particular case of marine animals the use of spatial information in the form of maps becomes essential due to the lack of information that often exists about their movements and habitat use.

The work here presented aims to elaborate a map of the applicability of the goniometric method in the Sado estuary and adjacent shoreline, used in the study of the spatial use of the estuary by the resident population of bottlenose dolphins. Therefore the goniometric method was used in the observation and precise positioning of bottlenose dolphins and on the definition of the limit for observation in the estuary, dead angles of observation from the observation sites and of areas of uncertainty due to the existence of collinearity inherent to the method and to the distance between the targets and the observation sites, both inside the estuary and in the immediately adjacent shoreline. The applicability of the goniometric method varies its efficiency for different areas in the estuary, being optimized for 18% of the study area and enabling the confirmation of the differential use of the Sado estuary by the resident population of bottlenose dolphins, with preference for the south canal and the estuary inlet (98.6% of the positions verified). The applicability of the method is restricted by the limit for observation at ten kilometers inside the estuary and limited by the existence of seven dead angles of observation from the St. Filipe fortress and from the terrace of the Tróia Design Hotel, by two areas of uncertainty in data sampling due to collinearity and three areas of uncertainty due to the distance to the observation sites. The goniometric method still demonstrates disadvantages since despite allowing the collection of data on study subjects at a distance, outside of the optimized applicability zone it don’t allows accurate positioning of targets in the estuary, being associated with considerate error when taking into consideration the scale of the study area sampled.

Key-words: bottlenose dolphins; *Tursiops truncatus*; Sado estuary; goniometric method; estuary use; method applicability
Introdução

A falta de informação sobre a ecologia e etologia das populações de roazes-corvineiros (*Tursiops truncatus*) que habitam estuários condiciona a nossa percepção do impacto das ameaças a que estas estão sujeitas (Balmer *et al.* 2008).

O impacto de algumas destas ameaças é no entanto difícil de quantificar e a falta de informação dificulta a avaliação do seu efeito nas tendências populacionais da espécie a longo prazo (Spradlin *et al.* 2005). Consequentemente, estudos que tenham como alvo os roazes que habitam ambientes estuarinos serão importantes para uma maior compreensão dos possíveis impactos das ameaças referidas. Serão ainda importantes para uma melhor gestão e definição de medidas de conservação adequadas, de maneira a reduzir as consequências dessas ameaças e a vulnerabilidade das populações (Westgate e Read 1998, Balmer *et al.* 2008).

As populações de roazes que habitam estuários têm assim vindo a ser alvo de um grande número de estudos em diversos pontos geográficos ao longo da Europa, América do Norte e Central, Nova Zelândia e Austrália. Tal como os restantes estudos que recaem sobre a biologia de cetáceos, baseiam a sua amostragem em três grandes categorias metodológicas: observação e recolha de dados a partir de meio aéreo, a partir de embarcações e a partir de um ou vários pontos em terra.

A observação e recolha de dados a partir de meio aéreo são muito usadas em estudos de distribuição e de estimativas de abundância de mamíferos (por exemplo Andriolo *et al.* 2001, Dunham 2012), por permitirem a amostragem rápida de áreas muito extensas, o
aproveitamento de curtos períodos de condições climatéricas favoráveis e por exigirem pouco esforço de amostragem (Evans e Hammond 2004). No entanto, o meio aéreo será pouco preciso por amostrar a distribuição dos animais num determinado instante. Existirá assim grande variabilidade entre os dados obtidos a cada amostragem, o que poderá impedir a percepção de padrões e tendências quando existe uma baixa frequência de amostragem (Barnes 2001, Ferreira e Van Aarde 2009). Adicionalmente, os custos elevados e o facto de a detectabilidade ser influenciada por um vasto número de factores nem sempre controláveis (como por exemplo a conspicuidade dos animais e as condições meteorológicas e de luz), tornam esta metodologia algo desvantajosa (Jachmann 2002, Evans e Hammond 2004).

Os métodos e estudos que têm como base a observação e a recolha de dados a partir de embarcações têm a vantagem de permitir a amostragem de áreas extensas durante longos períodos, permitindo a recolha de informação sobre os animais e o ambiente que os envolve (Evans e Hammond 2004). O reconhecimento individual, que se torna possível com esta metodologia, e a frequente repetição no processo de recolha de dados que normalmente ocorre, permitem obter informação útil e relevante para a complementação do estudo da população (Grilo 2010). Pelo contrário, têm a desvantagem de perturbar directa e indirectamente os animais, podendo interferir com o comportamento e enviesando os dados recolhidos (Constantine et al. 2004, Cascão 2001). O facto de os sistemas de posicionamento, tal como receptores de GPS irem a bordo das embarcações impede que seja recolhida a posição dos animais, devido à posição variável das embarcações e dos alvos e consequente distância entre eles.

Os métodos e estudos que têm como base a observação dos cetáceos a partir de terra não compreendem grandes custos. Demonstram a grande vantagem de não perturbar os animais com uma presença aproximada, obtendo ainda assim precisão na recolha das suas localizações e padrões de movimento (Würsig e Jefferson 1990, Berrow et al. 1996, Evans e Hammond 2004). Estas metodologias são condicionadas por limitações na extensão da área de detecção, sendo menores as áreas de estudo (Berrow et al. 1996, Evans e Hammond 2004). Ao implicar a existência de distância entre o observador e o alvo, torna-se difícil obter informações que dependam da proximidade dos animais, como o reconhecimento individual (Würsig e Jefferson 1990, Evans e Hammond 2004). Uma vez que os grupos de roazes são fluidos no tempo e espaço e existem variações nos comportamentos individuais devido ao sexo, idade e posição hierárquica, os estudos sobre a distribuição, movimentos e utilização do habitat poderão perder precisão sem o reconhecimento individual necessário (Wells e Scott 1980).
Apesar das diferenças verificadas nas vantagens e desvantagens inerentes a cada uma das categorias metodológicas, todas são usadas actualmente em estudos que têm como principal objectivo a conservação das diferentes espécies estudadas.

A conservação das espécies apresenta uma forte ligação funcional com a sua ecologia espacial, devido aos padrões espaciais que influenciam as interacções dos organismos com os elementos abióticos e bióticos do ambiente que habitam (O'Connell 2013).

As mudanças ambientais de origem antropogénica que decorreram desde o último século levaram a uma degradação e perda de habitats, influenciando a distribuição e abundância de muitas espécies e das suas populações (O'Connell 2013). Em paralelo houve um esforço de inovação tecnológica para tornar mais fácil a análise de dados espaciais, com a detecção remota de organismos (e possível posicionamento e seguimento de animais) e de habitats, usando informação fornecida por satélites (O'Connell 2013). Considerando em particular os animais marinhos, estes são bastante esquivos com uma grande mobilidade em habitats muito extensos e com uma distribuição muito generalizada, tornando particularmente difíceis e dispendiosos os estudos sobre a ocorrência dos mesmos (Kenney e Winn 1986). A consequente falta de informação que muitas vezes existe sobre os movimentos e a utilização do habitat das espécies marinhas torna a utilização de mapas essencial para estes estudos e para a conservação e gestão objectiva dos ambientes analisados (Anadon et al. 2011). A informação sobre a distribuição geográfica e temporal pode ajudar a definir zonas e períodos mais previsíveis de localização ou áreas importantes em diferentes fases da vida das espécies (durante a época de reprodução por exemplo), podendo ser definidas medidas de conservação mais específicas em resposta às ameaças antropogénicas nessas zonas (Evans e Hammond 2004).

A predictibilidade da localização fornecida pela informação sobre a distribuição geográfica disponível em mapas facilita o processo de localização e seguimento dos animais em estudos que se baseiam na observação e recolha de dados quer a partir de embarcações ou de meio aéreo (Evans e Hammond 2004). Nos estudos baseados em observações a partir de um ponto fixo em terra, a impossibilidade de seguir os animais confere uma importância adicional a mapas que tenham em conta a aplicabilidade dos métodos. É assim possível um melhor aproveitamento da área de estudo e uma mais fácil localização e seguimento dos alvos.

O trabalho aqui apresentado tem como objectivo a elaboração do mapa de aplicabilidade do método goniométrico no interior do estuário do Sado e linha costeira imediatamente
adjacente, usado no estudo da utilização espacial deste estuário pela população residente de roazes (*Tursiops truncatus*).

A população residente de roazes do estuário do Sado tem sido estudada ao longo dos últimos vinte anos, sendo que os estudos sobre a utilização do estuário se basearam em observação de roazes a partir de terra e a partir de embarcações. Os primeiros estudos realizados (dos Santos e Lacerda 1987, Freitas 1995, Freitas e dos Santos 1998) basearam-se em observações a partir de terra e em metodologias pouco precisas indicando apenas um posicionamento aproximado dos animais, estimado a partir de pontos de referência nas margens do estuário (Andrade *et al.* 2012).

As metodologias usadas baseavam-se na divisão do espaço do estuário em sectores, sendo que a resolução espacial seria sempre superior a 1 km\(^2\) e podendo a sectorização ser regular (Freitas 1995) ou irregular com o uso de sectores de geometria variável (dos Santos e Lacerda 1987). Alguns estudos mais recentes (Cascão 2001, Ferreira 2010) basearam-se ainda nesta metodologia pouco precisa de sectorização do espaço do estuário em sectores de geometria variável de resolução superior a 1km\(^2\). No entanto, o nível de erro associado ao posicionamento dos roazes, principalmente na zona de separação dos sectores definidos criou a necessidade de uso de metodologias mais precisas (Harzen 1998, Harzen 2002, Brito 2012). Harzen (1998) utilizou um teodolito electrónico (Zeiss Eth4) a partir de terra, registando os aparecimentos dos roazes à superfície e tendo concluído que a precisão das medidas aumentaria com o uso de dois teodolitos em separado (Harzen 2002). Sendo que a precisão diminui substancialmente com a distância do observador ao objecto em estudo e são exigidas boas condições de visualização no momento de recolha dos dados o que, aliado ao facto de a montagem e manuseamento do teodolito exigirem conhecimentos prévios e prática, constituem desvantagens ao uso deste método (Ferreira 2010). A qualidade das condições de visualização necessárias durante esta amostragem é definida com base na existência de factores como as condições atmosféricas, o reflexo da luz solar na superfície da água e a agitação da superfície do estuário (Barlow *et al.* 2001, Sagnol *et al.* 2014). Estes factores podem condicionar a observação, posicionamento e seguimento dos animais devido a impedimento parcial ou mesmo total de observação da superfície do estuário (Barlow *et al.* 2001, Sagnol *et al.* 2014).

Brito (2012) utilizou a medição de ângulos horizontais a partir do uso de um teodolito em dois pontos fixos em terra (goniometria). Intersectando os dois azimutes recolhidos nas duas
observações sincronizadas obteve o posicionamento dos roazes no estuário. Com este método conseguiu comprovar os resultados de estudos anteriores, indicando a preferência dos roazes não só pelo canal Sul como também pela zona da barra e a não existência de uma utilização preferencial do estuário consoante as diferentes actividades comportamentais. Inferiu ainda uma preferência de entrada no estuário com a enchente da maré e de saída com a vazante, e uma adaptação à presença de embarcações em seu redor, sem comportamentos de evitamento ou desaparecimento nesses momentos (Brito 2012).

A população residente de roazes no estuário do Sado, onde os roazes se mantêm ao longo de todo o ano e não migram (Reiner e Teixeira 1981, dos Santos e Lacerda 1987) será a única população residente em Portugal Continental. Terá sido referenciada pela primeira vez no estuário em 1863, por Barbosa du Bocage (dos Santos e Lacerda 1987). É habitual as populações costeiras possuírem o estatuto de populações residentes e os estuários, devido à sua riqueza biológica, são frequentemente seleccionados como locais preferenciais de alimentação, sendo as áreas que mais frequentemente abrigam populações residentes (Norris e Dohl 1980). O estuário do Sado revela-se assim um ambiente importante para os roazes, que dele obtêm protecção e uma riqueza alimentar significante (Gowans et al. 2008, Klinowska 1991, Norris e Dohl 1980, Ferreira 2010). Os roazes são animais oportunistas na escolha das suas presas, demonstrando mesmo preferências alimentares quando a disponibilidade de recursos o permite (Corkeron et al. 1990) e alimentando-se de diversas espécies de peixes, crustáceos e cefalópodes (Shane 1990). O interior do estuário é assim uma área de alimentação fundamental, de especial importância durante a Primavera (Gaspar 2003), tendo os roazes preferência por zonas como a extremidade da península de Tróia, a zona junto à Caldeira de Tróia, o Canal da Comporta (Freitas 1995, Cândido 2003) e os baixios próximos da embocadura (Sequeira et al. 2009).

No entanto, a distribuição das presas variável no tempo e espaço revela-se uma condição insuficiente para manter a população residente apenas no estuário e forçando-a a deslocar-se entre o ambiente estuarino e a linha de costa aberta, numa área de residência entre Setúbal, Sines e o Cabo Espichel (Harzen 1998).

Actualmente a população é constituída por 27 indivíduos (Gaspar 2013), apresentando um efectivo populacional abaixo do mínimo viável de 50 indivíduos (Shafer e Samson 1985, Gaspar 2003). O actual reduzido efectivo da população será um resultado do declínio da mesma ao longo dos últimos 28 anos, desde 1986, em que estimativa seria de 40 indivíduos.
(Gaspar 2003, 2004). Isto dever-se-á à baixa sobrevivência dos juvenis, ausência de recrutamento e consequente envelhecimento da população (Silva 2008, Sequeira et al. 2009), que tornam a extinção desta população uma hipótese para as próximas décadas quando associadas com as características intrínsecas da espécie referentes ao seu ciclo de vida: reprodução lenta (Leatherwood e Reeves 1983), maturação sexual tardia, longa dependência da progenitora (Sequeira et al. 2009) e longa longevidade (Wells 1987).

As ameaças a esta população frágil e única em Portugal Continental levaram a que o ICNF desenvolvesse acções de conservação no quadro da gestão da Reserva Natural do Estuário do Sado, com a implementação do Plano de Acção para a salvaguarda e monitorização da população de Roazes no estuário do Sado (Sequeira et al. 2009). O trabalho aqui apresentado explora dados obtidos no âmbito do projecto “Monitorização do padrão de ocupação do estuário do Sado pela população residente de roazes (Tursiops truncatus) e interacções com a navegação no estuário”, integrado no Plano de Acção para a salvaguarda e monitorização da população de Roazes no estuário do Sado (Sequeira et al. 2009), uma iniciativa da Trojanatura.

Os estudos realizados até à data sobre a utilização do estuário por parte dos roazes demonstram que esta será selectiva, com uma clara preferência pelo canal Sul e zona da Barra

Sabendo que os vertebrados superiores aprendem a disposição espacial do seu ambiente de maneira a definirem os percursos mais eficientes até aos seus alvos (Prescott 1996), é de esperar que as zonas preferenciais se demonstrem privilegiadas para deslocação e alimentação, com uma maior disponibilidade alimentar, maior profundidade e corrente e menor carga poluente (Nunes 2001, Harzen 2002, Gaspar 2003, Sequeira et al. 2009).

A distribuição e ecologia dos recursos alimentares é um dos factores de maior importância na influência sobre os padrões de movimentos e utilização do habitat por parte dos roazes (Shane et al. 1986, Hart 1997, dos Santos et al. 2007). Existirá uma maior abundância de roazes em zonas de maior disponibilidade alimentar (Berrow et al. 1996, Bearzi et al. 2008), sendo que flutuações na quantidade e qualidade das presas influenciam os comportamentos alimentares dos roazes e a sua deslocação (em termos de direcção e velocidade) e uso espacial do habitat (Jaquet et al. 2003).

Os estudos anteriores comprovam também o evitamento do canal Norte (p. ex., Ferreira 2010). Este canal, mais próximo da cidade de Setúbal e constituindo o acesso ao porto de Setúbal e unidades industriais, apresenta um maior tráfego de embarcações (especialmente associado à actividade portuária não sazonal) e consequente poluição acústica (Ferreira et al. 1996, dos Santos 1998, Luís 2008). A poluição acústica causada por embarcações perturba os roazes, provocando alterações no seu comportamento acústico e levando a que estes evitem as zonas de maior ruído, como o porto de Setúbal (Luís et al. 2014). Apesar de não se saber ao certo qual o impacto biológico destas alterações no comportamento acústico, é possível que possam ser afectadas as actividades de alimentação e reprodução (Luís et al. 2014).

O estuário está sujeito a um intenso tráfego de embarcações, com ferry-boats, grandes navios, embarcações de pesca, recreio e marítimo-turísticas (Sequeira et al. 2009). Sendo o estuário
uns ambientes onde os roazes passam um período substancial de tempo, estes encontrar-se-ão sujeitos às pressões exercidas por este tráfego. As embarcações de rotas constantes e de baixa velocidade e as embarcações de pesca não afectam os roazes, demonstrando estes reacções neutras à sua presença (Silva 2008, Sequeira et al. 2009). Pelo contrário, as embarcações de recreio e marítimo-turísticas podem ter impactos negativos nos roazes, dificultando a sua alimentação, comunicação e deslocação (Gaspar 2004, Cascão 2001), apesar de estes demonstrarem já algumas provas de adaptação à sua presença e não tendo grande impacto na utilização do estuário por parte dos roazes (Brito 2012). A reprodução dos roazes poderá também ser afectada pela poluição acústica causada por embarcações (Borges 2013), sendo que os meses de Verão são os de maior tráfego de embarcações no estuário (Andrade et al. 2012, IMAR 2103).
Objectivos

Este trabalho teve como objectivo o estudo da aplicabilidade do método goniométrico no interior do estuário do Sado e linha costeira imediatamente adjacente, usado no estudo da utilização deste espaço pela população de roazes.
Metodologia

A espécie em estudo

O roaz ou roaz-corvineiro, *Tursiops truncatus* (Montagu 1821), é um cetáceo pertencente à família Delphinidae, sendo actualmente uma das espécies de cetáceos mais bem estudada. É uma espécie cosmopolita, com ampla distribuição geográfica, salvo as regiões polares (Evans 1987). Encontra-se em águas frias, temperadas e tropicais, demonstrando que a sua distribuição será limitada pela temperatura e o seu efeito na disponibilidade de presas (Wells e Scott 1999).

As presas escolhidas e a flexibilidade nas estratégias de predação (Shane 1990) revelam o seu carácter oportunista, podendo estes no entanto revelar preferências alimentares quando os recursos existentes o permitem (Corkeron *et al.* 1990).

Os roazes apresentam um ciclo de vida caracterizado por uma reprodução lenta (Leatherwood e Reeves 1983), maturação sexual tardia, longa dependência da progenitora (Sequeira *et al.* 2009) e longa longevidade (Wells 1987). A sobrevivência será mais baixa no primeiro ano de vida e quando os juvenis se associam em grupos, separando-se das suas progenitoras e ficando assim mais vulneráveis (Sequeira *et al.* 2009).

Com comportamentos complexos, o roaz é um animal social (Lockyer 1990), agindo em grupo e cooperativamente (Carvalho 2000). Apresentam uma estrutura social de fissão-fusão (Pace *et al.* 2011) em que devido aos movimentos individuais, os roazes se juntam em grupos de variada composição e tamanho por períodos de uma hora ou de um dia (Connor *et al.* 2000). Os grupos formados variam assim com factores como o comportamento, o sexo e idade dos indivíduos, o estado reprodutivo, o nível de consanguinidade e a existência de hierarquias de dominância (Wells *et al.* 1980, Scott 1990, Connor 2000). Apesar da
composição dos grupos variar flexível e dinamicamente ao longo do tempo, os roazes podem formar associações preferenciais de longa duração, como no caso das fêmeas e suas crias (Möller et al. 2006).

As populações de roazes apresentam-se sujeitas a inúmeras ameaças, nenhuma delas contribuindo significativamente para o declínio do efectivo global da espécie, sendo o seu estado de conservação listado como Pouco Preocupante (Least Concern) pela União Internacional para a Conservação da Natureza (IUCN) (Hammond et al. 2008) e pelo Livro Vermelho dos Vertebrados de Portugal (Almeida et al. 2008).

Área de estudo

O estuário do Sado, o segundo maior estuário de Portugal com um total de 45 km de extensão da embocadura ao limite da influência da maré é uma das zonas húmidas de maior riqueza animal e vegetal no país (Cabral 1999). O rio Sado, que nasce na Serra da Vigia no Baixo Alentejo, segue uma orientação de sul para norte e de norte para noroeste desaguando na baía de Setúbal, sendo que o estuário poderá ter origem em Alcácer do Sal, onde começa a intrusão de água salgada (Cabral 1999). O estuário é dividido na sua zona intermédia por vários bancos intertidais dando origem a dois canais, norte e sul e terminando depois na baía de Setúbal, limitado pela cidade de Setúbal à direita e pela península de Tróia do lado esquerdo (Cabral 1999).

Este estudo realizou-se na zona terminal do estuário, desde a barra até à zona no interior do estuário onde se situa a Lisnave e incluindo ainda parte da zona costeira imediatamente adjacente ao estuário (Figura 1).
As correntes de maré influenciam o estuário do Sado, principalmente a zona da foz (Neves 1985 in Rodrigues e Quintino 1993). O canal Sul, ao longo da península de Tróia, é o canal mais largo e profundo (com valores de profundidade até os 25 metros), apresentando ainda correntes mais intensas. O canal Norte, junto da cidade de Setúbal e influenciado pela cidade e suas áreas industriais, apresenta correntes mais fracas, que levam a uma maior deposição de sedimentos (Neves et al. 2009) e consequentes profundidades de apenas 10-15 metros, apresentando variabilidade de acordo com as dragagens efectuadas no canal (Gaspar 1994, Sequeira et al. 2009).

A riqueza biológica, principalmente a nível ornitológico e ictiológico (Cândido 2003) e a diversidade de habitats conferem ao estuário do Sado uma enorme importância ecológica, estando este incluído com estatuto de conservação em vários documentos legais. Está compreendido na Reserva Natural do Estuário do Sado (RNES), segundo o Decreto-Lei n.º 430/80, na Rede Natura 2000, desde 1997, no Plano de Ordenamento da Reserva Natural do Estuário do Sado (PORNES), na lista das Zonas Húmidas de Importância Internacional.
segundo a Convenção Ramsar e, desde 1999, constitui uma Zona de Protecção Especial (ZPE), segundo o Decreto-Lei n.º 384-B/99 (Sequeira et al. 2009).

O método goniométrico

O método goniométrico foi desenvolvido e validado no projecto de Monitorização do padrão de ocupação do estuário do Sado pela população residente de roazes (Tursiops truncatus) e interacções com a navegação no estuário, enquadrado no Plano de Acção para a salvaguarda e monitorização da população de roazes do estuário do Sado (Andrade et al. 2012).

Este método baseia-se na medição de ângulos planos sobre um alvo a partir de dois pontos fixos em terra, permitindo o posicionamento rigoroso dos alvos no estuário e o seu acompanhamento, não havendo interacção com o alvo em estudo o que poderia provocar o enviesamento dos dados (Andrade et al. 2012).

Os roazes são avistados com frequência e regularmente, o que permite observá-los a partir de terra com sucesso (Würsig et al. 1991). Assim, a recolha de dados foi realizada a partir de dois locais georreferenciados das margens, elevados em relação ao estuário. A elevação dos pontos de observação permite diminuir o erro de leitura associado à distância a que os alvos se encontram (Würsig et al. 1991), sendo os locais seleccionados o Forte de S. Filipe (38°31,062’N; 08°54,546’W) e o terraço do Tróia Design Hotel (38°29,584’N; 08°54,173’W), na margem sul do estuário, pois segundo Brito (2012) estes permitem uma maior área de amostragem, existindo uma reduzida área cuja observação é bloqueada por obstáculos permanentes.

Em cada ponto de observação, uma equipa de dois observadores fez o varrimento visual da área de amostragem, utilizando binóculos Olympus DPSI 8x40 ou Steiner Skyhawk 8x42 com um campo de 8.2°. Quando os roazes foram avistados, foi utilizado um telescópio Carl Zeiss Diascope 85 FL, equipado com uma ocular D 20x 60x B para efectuar o posicionamento e seguimento dos alvos (Figura 2). Ao tripé pesado e de cabeça fluida do telescópio foi acoplada uma escala circular fixa. Esta escala apresenta uma graduação com intervalos de um grau (1°), sobre a qual roda um indicador adjunto com o telescópio e com o qual é possível ler o azimute (com valores entre 0° e 359°) de um alvo. Este alvo estaria centrado no campo de visão, sendo que a leitura apresenta uma precisão de meio grau (0,5°) (Brito 2012, Andrade et al. 2012). As leituras devidamente sincronizadas dos azimutes das duas observações serão
intersectadas, determinando uma posição única no estuário. O sincronismo de leituras em tempo real foi possível por via telefônica.

Para o estudo da utilização espacial do estuário pela população de roazes, estes foram avistados e seguidos durante o maior período de tempo possível, sendo o posicionamento do grupo realizado em intervalos irregulares de 1-10 minutos aquando das suas emersões. Quando mais do que um grupo de roazes foi avistado, a escolha do alvo a seguir foi aleatória, sendo que as posições recolhidas foram sempre referentes ao centro do grupo seleccionado. Os azimutes medidos em cada posicionamento dos roazes não são referentes ao Norte geográfico, pelo que foi necessária a conversão dos seus valores para posterior introdução dos dados no software Google Earth Pro®.

Com este software de acesso livre a imagens actuais e georreferenciadas, a marcação das linhas com ângulos definidos e referentes ao Norte (azimutes absolutos), permitiu a determinação do ponto de intersecção das duas leituras realizadas em simultâneo, a partir dos dois pontos de observação em campo, obtendo-se assim os posicionamentos de roazes. A análise dos pontos de posicionamento de roazes permitiu perceber a sua utilização do estuário.

Figura 2 – Telescópio Carl Zeiss Diascope 85 FL e pormenor da escala circular graduada montada no tripé, utilizada para leitura dos azimutes.
Elaboração de um mapa de aplicabilidade do método goniométrico no estuário do Sado

A área de aplicabilidade do método consiste na área útil de observação da superfície do estuário, onde o método pode ser utilizado para o posicionamento de roazes (e embarcações). Foram excluídas zonas onde a colinearidade, a distância dos alvos aos pontos de observação, o limite de leitura do método no interior do estuário e a existência de ângulos mortos de observação a partir dos pontos de amostragem não permitiram essa observação. Os valores das áreas de aplicabilidade e a percentagem de aplicabilidade foram calculados a partir do software Google Earth Pro®. Todas as imagens finais e mapas foram obtidos a partir do software Qgis 2.8.2.

1. Definição do limite de leitura do método goniométrico no interior do estuário e dos ângulos mortos de observação a partir dos pontos de observação

A partir da análise dos posicionamentos de roazes reais obtidos foi possível definir o limite de leitura do método goniométrico no interior do estuário. Foram analisadas todas as localizações de roazes obtidas e calculadas as maiores distâncias entre o Forte de S. Filipe (o ponto de observação em terra que permite uma abrangência de maiores distâncias) e as localizações de roazes no interior do estuário. A localização de roazes mais distantes revelou a distância máxima a que a superfície do estuário foi observável do Forte de S. Filipe, definindo o limite de leitura do método goniométrico no interior do estuário.

A definição dos ângulos mortos de observação devido à presença de obstáculos permanentes no interior do estuário e na linha costeira adjacente foi possível a partir da observação cuidada da área de estudo durante o período de amostragem e registo das posições e correspondentes azimutes limite, onde a observação livre da superfície do estuário era ainda possível. O registo destes azimutes (cujos valores foram devidamente corrigidos para se...
referirem ao Norte geográfico) permitiu a posterior construção de polígonos correspondentes às zonas obstruídas pelos obstáculos.

2. Definição de zonas de erro na utilização do método goniométrico devido à existência de colinearidade e da distância aos pontos de observação

O método goniométrico não se encontra isento de erros, sendo que alguns poderão ser minimizados pelo cumprimento rigoroso do protocolo de campo, como os de carácter aleatório ou de carácter sistemático (Brito 2012). Por outro lado, existirão erros mais difíceis de controlar como o erro do instrumento descrito por Andrade et al. (2012) e traduzido pela equação:

\[E_g = \text{sen} (0,5^\circ \times d), \]

Sendo \(E_g \) o erro de instrumento, \(0,5^\circ \) a precisão máxima de leitura e \(d \) a distância entre o objecto alvo e o ponto de observação.

O erro aumenta de forma directamente proporcional com a distância entre o observador e o objecto alvo, implicando o mesmo aumento na incerteza no posicionamento dos objectos observados (Andrade et al. 2012). Uma vez que os ângulos formados entre o ponto de observação e o alvo no estuário deverão também ser considerados, esta equação não será no entanto suficiente para descrever o erro associado ao instrumento. Visto o posicionamento dos alvos no estuário ser feito com um método de triangulação pelo cruzamento de dois azimutes, a incerteza neste posicionamento será definida por um quadrilátero de limites correspondentes ao erro máximo associado a qualquer medição do goniômetro, ou seja a ±0,5° a partir de cada ponto de observação (Figura 3) (Andrade et al. 2012).
O erro máximo no posicionamento de um alvo no estuário será assim traduzido pela equação que calcula a área do quadrilátero de incerteza criado (Andrade et al. 2012):

\[
A[DEFG] = \frac{1}{2} \left(\overline{DE} \cdot \overline{EF} \cdot \text{sen}(\theta_1 + \theta_2 + \theta) + \overline{DG} \cdot \overline{FG} \cdot \text{sen}(\theta_1 + \theta_2 - \theta) \right)
\]

em que,

\[
\overline{DE} = a \cdot \left(\frac{\text{sen} \left(\frac{\theta_1 + \theta}{2} \right)}{\text{sen}(\theta_1 + \theta_2 + \theta)} - \frac{\text{sen} \left(\frac{\theta_1 - \theta}{2} \right)}{\text{sen}(\theta_1 + \theta_2)} \right)
\]

\[
\overline{DG} = a \cdot \left(\frac{\text{sen} \left(\frac{\theta_2 + \theta}{2} \right)}{\text{sen}(\theta_1 + \theta_2)} - \frac{\text{sen} \left(\frac{\theta_2 - \theta}{2} \right)}{\text{sen}(\theta_1 + \theta_2 - \theta)} \right)
\]
\[
\overline{EF} = a \left(\frac{\sin (\theta_2 + \frac{\theta}{2})}{\sin (\theta_1 + \theta_2 + \theta)} - \frac{\sin (\theta_2 - \frac{\theta}{2})}{\sin (\theta_1 + \theta_2)} \right)
\]

\[
\overline{FG} = a \left(\frac{\sin (\theta_1 + \frac{\theta}{2})}{\sin (\theta_1 + \theta_2)} - \frac{\sin (\theta_1 - \frac{\theta}{2})}{\sin (\theta_1 + \theta_2 - \theta)} \right)
\]

Sendo que,

- \(a\) é a distância entre os pontos de observação A e B,
- \(\theta\) é o erro máximo do goniômetro (um grau),
- \(\theta_1\) é o ângulo entre o azimute do ponto de observação A e o segmento de recta \(a\),
- \(\theta_2\) é o ângulo entre o azimute do ponto de observação B e o segmento de recta \(a\).

Esta equação que traduz a área do quadrilátero de incerteza para cada posicionamento foi aplicada neste trabalho para o estudo do impacto da colinearidade e da distância aos pontos de observação no método goniométrico.

- **Efeito da colinearidade na aplicabilidade do método goniométrico no interior do estuário e linha costeira adjacente**

Os azimutes medidos aquando da amostragem em campo poderão ser afectados pela colinearidade existente entre o objecto visado e os pontos de observação das margens utilizados (Forte de S. Filipe e Tróia Design Hotel), sendo nesse caso os azimutes medidos a partir de cada ponto praticamente paralelos (ou mesmo paralelos quando sobrepostos com a recta de colinearidade). Consequentemente, o posicionamento dos roazes não será possível, visto não existir precisão na medição dos dois azimutes necessários para a triangulação, existindo assim uma área que não pode ser contabilizada como área útil de utilização do método.
A colinearidade definida entre os pontos de observação no Forte de S. Filipe e do terraço do Tróia Design Hotel tem o azimute definido de 168,9º, sendo que o posicionamento de roazes não é possível neste valor de azimute.

De maneira a testar o efeito da colinearidade na aplicabilidade do método no interior do estuário foi desenhada uma grelha de 3,9 por 2,9 quilómetros em redor da recta de colinearidade constituída por 60 pontos fictícios com coordenadas de latitude e longitude espaçadas por meio grau (Figura 4).

De maneira a testar o efeito da colinearidade na aplicabilidade do método na linha costeira imediatamente adjacente ao estuário foi desenhada uma grelha de 3,9 por 3,9 quilómetros em redor da recta de colinearidade constituída por 79 pontos fictícios com coordenadas de latitude e longitude espaçadas por meio grau (Figura 5).
As grelhas contêm pontos localizados em terra que logicamente não serão encarados como posicionamentos de roazes. No entanto a sua inclusão na grelha de análise permite abordar com maior detalhe os efeitos da proximidade aos pontos de observação no estudo do efeito da colinearidade na aplicabilidade do método.

Foi depois aplicada a equação que traduz a área do quadrilátero de incerteza no posicionamento de um alvo no estuário a cada um dos pontos fictícios gerados, de maneira a analisar a variação do erro no posicionamento com a variação do efeito da colinearidade segundo os eixos Norte-Sul e Este-Oeste ao longo do estuário e da linha costeira imediatamente adjacente.
Para a análise do efeito da distância aos pontos de observação na aplicabilidade do método goniométrico no estuário e linha costeira adjacente foram criados pontos fictícios com coordenadas de latitude e longitude espaçadas por meio grau ao longo de toda a área de estudo considerada neste trabalho (Figura 6).

Foram excluídos todos os pontos que recaíam sobre terra e sobre as zonas excluídas do mapa de aplicabilidade devido à existência de ângulos mortos de observação a partir dos pontos de observação, uma vez que em ambos os casos a sua inclusão não faria sentido na análise aqui descrita.

Figura 6 – Pontos fictícios gerados para toda a área de estudo para análise do efeito da distância aos pontos de observação na aplicabilidade do método goniométrico.

Posteriormente foi aplicada a equação que traduz a área do quadrilátero de incerteza no posicionamento de um alvo no estuário a cada um dos pontos fictícios gerados, de maneira a analisar a variação do erro no posicionamento com o aumento da distância a cada um dos
pontos de observação e segundo os eixos Norte-Sul e Este-Oeste ao longo do estuário e da linha costeira imediatamente adjacente.

A equação que traduz a área do quadrilátero de incerteza no posicionamento de um alvo no estuário não foi aplicada a 17 pontos da grelha criada na linha costeira imediatamente adjacente ao estuário devido à definição do limite de leitura do método goniométrico a partir do Forte de S. Filipe nesta área.

Este valor limite de leitura do método consiste no valor de azimute a partir do qual a observação da superfície da água junto à linha de costa deixa de ser possível desde o Forte de S. Filipe, valor que não foi possível determinar com precisão em campo, tendo sido definido a partir da análise dos posicionamentos de roazes reais obtidos. Tal é possível pois os posicionamentos reais representam a capacidade de visualização da superfície da água nesses pontos e consequente capacidade de leitura do método a partir dos dois pontos de observação (ou a triangulação necessária ao processo de posicionamento dos roazes não seria possível).

Assim, para definição do limite de leitura do método a partir do ponto de observação do Forte de S. Filipe, foram escolhidos os posicionamentos reais mais próximos da linha costeira que se apresentavam mais distantes no sentido sudeste (Figura 7).

Posteriormente, a estes pontos foi então aplicada a equação de cálculo do erro de instrumento, de maneira a perceber a variação do erro com o aumento da distância ao ponto de observação do Forte de S. Filipe (que sendo o ponto de observação mais distante, comprenderá um maior nível de erro).
Figura 7 – Limite de leitura do método goniométrico na linha costeira imediatamente adjacent ao estuário, a partir do ponto de observação do Forte de S. Filipe.
Resultados

Utilização do estuário por parte dos roazes

Foi efectuado um total de 24 campanhas entre Maio e Dezembro de 2013 e em Janeiro, Junho e Agosto de 2014, sendo que uma das campanhas realizadas serviu de teste à metodologia e em quatro das campanhas realizadas não se verificou observação de roazes.

A amostragem foi apenas realizada durante o período diurno, uma das implicações do método de observação usado, havendo diversidade nos dias da semana amostrados, nas condições de maré e meteorológicas (Anexo A). A amostragem foi realizada durante o período médio de 6 horas por dia, exceptuando os casos em que o período foi diminuído devido à falta de condições de visibilidade do estuário. Durante o período de amostragem foram registados seis momentos em que a observação da superfície do estuário foi impedida pelas condições climatéricas e de marés existentes num dado momento, sendo que a impossibilidade de observação terá decorrido pelo período médio de uma hora em cada um desses dias (Anexo B). No total foram realizadas 78 horas de amostragem, 58 horas das quais de observação, seguimento e posicionamento de roazes. A maioria das observações e posicionamentos de roazes foram registados no Verão e durante o período da manhã.

No campo foram registados 1226 azimutes, o que resultaria num total de 613 localizações de roazes. No entanto apenas foram obtidas 589 localizações de roazes devido a erros dos observadores na marcação dos valores dos azimutes e em que o processo de triangulação não terá sido possível (este processo de eliminação apenas pôde ser realizado posteriormente, visto em campo não ser possível ter percepção do erro associado às leituras realizadas).

Das 589 localizações obtidas em campo e analisadas em Google Earth Pro, apenas 558 foram consideradas como pontos correspondentes a posicionamentos de roazes, posteriormente a terem sido eliminadas as medições com erro associado devido à existência de colinearidade e de ângulos mortos à observação a partir dos pontos de observação.

*A realização de saídas não foi possível entre Janeiro e Junho de 2014 a devido a razões de ordem profissional não relacionadas com o mestrado e a dissertação aqui apresentada.
Foram registados posicionamentos de roazes no canal Sul do estuário até à zona correspondente à localização da Lisnave, na zona da Barra, área do Cambalhão e zona costeira imediatamente adjacente ao estuário (Figura 8). Foram registados posicionamentos no canal Norte em apenas um dos dias de amostragem, a 12 de Agosto de 2014 (Figura 9). No total de posicionamentos obtidos, aproximadamente 98,6% ocorreram no canal Sul e os restantes 1,4% no canal Norte.

Figura 8 – Total de posicionamentos de roazes registados no estuário do Sado e linha costeira imediatamente adjacente ao mesmo.
Figura 9 – Posicionamentos de roazes registados no canal Norte do estuário do Sado
Elaboração de um mapa de aplicabilidade do método goniométrico no estuário do Sado

1. Definição do limite de leitura do método goniométrico no interior do estuário e dos ângulos mortos de observação a partir dos pontos de observação

Analisando as distâncias entre as posições de roazes obtidas e o ponto de observação do Forte de S. Filipe, verifica-se que as posições mais afastadas são as representadas pelos pontos 4, 5 e 6 (Figura 10).

A distância do ponto 4 ao ponto de observação do Forte de S. Filipe é de aproximadamente 10 400 m, sendo a distância máxima assumida à qual será possível posicionar roazes de 10 km. Será possível observar embarcações e registar a sua posição até ao limite de 11 km, aproximadamente (a embarcação marítimo-turística Costa Azul foi observável a 11,4 km do forte, enquanto que a embarcação marítimo-turística Vertigem Azul foi observável a 10,9 km do forte).

Figura 10 - Pontos de observação e posicionamentos de roazes localizados a maior distância do ponto de observação do Forte de S. Filipe.
Calculado o erro de instrumento (Andrade et al., 2012) para os limites de visão obtidos, verifica-se que o erro será de 87 metros a partir do Forte de S. Filipe e de 70 m a partir do terraço do Tróia Design Hotel, no caso do limite de 10 km, e de 96 metros a partir do Forte de S. Filipe e de 79 metros a partir do Tróia Design Hotel, no caso do limite de leitura do método de 11 km.

O ponto de observação do Forte de S. Filipe apresenta um obstáculo permanente (correspondente a um dos muros do próprio Forte) que impede a observação da superfície do estuário na zona da Comenda a partir do azimute limite de 213º. Apresenta ainda três obstáculos permanentes que impedem a observação da superfície na linha costeira imediatamente adjacente ao estuário. Estes serão referentes ao Tróia Design Hotel (não sendo possível a observação entre os azimutes 168,06º-169,15º), ao Aqualuz Suite Hotel (entre os azimutes 171,38º-172,54º) e a um edifício de apartamentos residenciais (entre os azimutes 165,57º-166,50º). O ponto de observação do Forte de S. Filipe apresenta assim quatro ângulos mortos de observação da superfície do estuário (Figura 11).

Figura 11 – Ângulos mortos de observação a partir do ponto de observação do Forte de S. Filipe e respectivos valores de azimute limite onde a observação da superfície do estuário deixa de ser possível (em graus).
O ponto de observação do Terraço do Tróia Design Hotel apresenta um ângulo morto no interior do ambiente estuarino referente ao obstáculo “recanto do verde”, sendo que o azimute limite onde a observação da superfície do estuário deixa de ser visível apresenta o valor de 114,27º. O polígono correspondente à zona obstruída pelo “recanto do verde” foi obtido pela definição de uma linha desde o ponto em que o azimute intersecta a extremidade do “recanto do verde” e o novo cais dos ferries, estrutura da margem que não é ainda observável do ponto de observação do Terraço do Tróia Design Hotel (Figura 12).

Este ponto de observação apresenta ainda três ângulos mortos de observação na linha costeira adjacente ao estuário, sendo que um ângulo morto corresponde à estrutura do próprio Tróia Design Hotel (entre os azimutes 171,56º-181,93º) e os restantes dois serão referentes aos dois edifícios do Aqualuz Suite Hotel (não sendo possível a observação da superfície do estuário entre os azimutes 192,26º-200,26º e 211,06º-221,06º). O terraço do Tróia Design Hotel apresenta assim um total de quatro ângulos mortos de observação (Figura 13).

Figura 12 – Ângulo morto de observação a partir do ponto de observação do Tróia Design Hotel e devido ao “recanto do verde”.
Figura 13 - Ângulos mortos de observação a partir do ponto de observação do Tróia Design Hotel e respectivos valores de azimute limite onde a observação da superfície do estuário deixa de ser possível (em graus).
2. Definição de zonas de erro na utilização do método goniométrico devido à existência de colinearidade

- Efeito da colinearidade na aplicabilidade do método goniométrico no interior do estuário e linha costeira adjacente

A variação do valor das áreas dos quadriláteros de incerteza obtidos para cada ponto fictício constituínte da grelha de análise do efeito da colinearidade na aplicabilidade do método foi analisada segundo a variação da colinearidade segundo o eixo Norte-Sul e Este-Oeste tanto no interior do estuário (Figura 14 e 15), como na linha costeira imediatamente adjacente (Figura 16 e 17).

Em ambos os locais se verificaram maiores áreas de incerteza associadas aos pontos imediatamente adjacentes à recta de colinearidade e aos pontos mais distantes dos pontos de observação quer no sentido Norte-Sul ou no Este-Oeste.
Figura 14 – Mapa da variação das áreas dos paralelogramos de incerteza (a azul, para valores inferiores a 1000 m²) associados a cada ponto no interior do estuário (a vermelho) em redor da recta de colinearidade (a verde). Os valores da área de erro (m²) encontram-se visíveis.
Figura 15 – Mapa da variação das áreas dos paralelogramos de incerteza (a roxo, para valores superiores a 1000 m²) associados a cada ponto no interior do estuário (a vermelho) em redor da recta de colinearidade (a verde). Os valores da área de erro (m²) encontram-se visíveis.
Figura 16 – Mapa da variação das áreas dos paralelogramos de incerteza (a azul, para valores inferiores a 1000 m²) associados a cada ponto na linha costeira imediatamente adjacente ao estuário (a vermelho) em redor da recta de colinearidade (a verde). Os valores da área de erro (m²) encontram-se visíveis.
Figura 17 – Mapa da variação das áreas dos paralelogramos de incerteza (a roxo, para valores superiores a 1000 m²) associados a cada ponto na linha costeira imediatamente adjacente ao estuário (a vermelho) em redor da recta de colinearidade (a verde). Os valores da área de erro (m²) encontram-se visíveis.
- **Efeito da distância aos pontos de observação na aplicabilidade do método goniométrico no interior do estuário e linha costeira adjacente**

Com a análise das áreas dos paralelogramos de incerteza criados para pontos fictícios ao longo de toda a extensão da área de estudo verificou-se que a área dos quadriláteros de incerteza obtidos para cada ponto gerado será gradualmente maior com o aumento da distância aos pontos de observação (Figura 18)*.

Com a análise dos resultados obtidos com a equação de cálculo do erro de instrumento verificou-se que este será maior quanto maior for a distância ao ponto de observação (Figura 19).

* Na figura 18 apesar de alguns dos pontos gerados aparentarem localizar-se em terra, tal é devido à escala da imagem, como é possível de confirmar em contraste com a figura 6.
Figura 18 – Variação da área do paralelogramo de incerteza criado para cada ponto fictício gerado na área de estudo do estuário do Sado e linha costeira imediatamente adjacente.
Figura 19 – Erro de instrumento calculado para pontos seleccionados que ultrapassavam o limite de leitura do método goniométrico a partir do ponto de observação do Forte de S. Filipe, na linha costeira imediatamente adjacente ao estuário do Sado.
Mapa de aplicabilidade do método goniométrico no estuário do Sado

Foram verificados 29 posicionamentos de roazes que coincidiam com as zonas em que a observação não seria possível devido a ângulos mortos de observação a partir do ponto de observação do Forte de S. Filipe (ângulo referente à zona da comenda) e do terraço do Tróia Design Hotel (ângulo referente ao Aqualuz Suite Hotel). Estes posicionamentos foram considerados como erros de amostragem e não foram contabilizados no total de 558 posicionamentos apresentados e na elaboração do mapa de aplicabilidade.

No mapa de aplicabilidade do método goniométrico são excluídas sete zonas no interior do estuário e na área costeira adjacente devido à existência de ângulos mortos de observação a partir dos pontos de observação.

Com a análise conjunta do efeito da colinearidade e da distância aos pontos de observação na aplicabilidade do método, verifica-se que existirão três níveis de aplicabilidade distintos: uma aplicabilidade óptima (para valores de áreas de paralelogramos de incerteza nos posicionamentos de alvos inferiores a 1000 m²), uma aplicabilidade razoável (para valores de área entre 1000 m² e 3000 m²) e uma aplicabilidade fraca, (para valores de áreas dos paralelogramos de incerteza superiores a 3000 m²).

Pelo estudo do efeito da colinearidade na aplicabilidade do método goniométrico no interior do estuário são excluídas da área de aplicabilidade óptima: uma zona, devido ao efeito da colinearidade e duas zonas, devido ao efeito da distância aos pontos de observação, em que a área do quadrilátero de incerteza para cada ponto criado ultrapassa o valor de 1000 m² (Figura 20). Verificou-se que 25 posicionamentos reais de roazes amostrados coincidiam com estas zonas excluídas, não podendo ser contabilizados como dados de amostragem em estudos rigorosos da utilização do estuário por parte da população de roazes.
Pelo estudo do efeito da colinearidade na aplicabilidade do método goniométrico na linha costeira imediatamente adjacente foram excluídas também três zonas da área de aplicabilidade óptima: uma zona devido ao efeito da colinearidade e duas zonas devido ao efeito da distância aos pontos de observação, em que a área do quadrilátero de incerteza para cada ponto criado ultrapassa o valor de 1000 m^2 (Figura 21). Verificou-se que 26 posicionamentos reais de roazes amostrados coincidiam com estas zonas excluídas, não podendo ser contabilizados como dados de amostragem em estudos rigorosos da utilização do estuário por parte da população de roazes.
Pelo estudo do efeito da distância dos alvos aos pontos de observação na aplicabilidade do método goniométrico na área de estudo foram excluídas da área de aplicabilidade óptima três zonas em que a área do quadrilátero de incerteza para cada ponto criado ultrapassa o valor de 1000 m² (Figura 22). Verificou-se que 163 posicionamentos reais de roazes amostrados coincidiam com estas zonas excluídas, não podendo ser contabilizados como dados de amostragem em estudos rigorosos da utilização do estuário por parte da população de roazes.
Um total de 38% dos posicionamentos reais de roazes amostrados coincidia com estas zonas excluídas devido ao efeito da colinearidade e da distância aos pontos de observação na aplicabilidade óptima do método goniométrico na área de estudo.

Numa área de estudo de aproximadamente 72,2 km², o método goniométrico tem uma aplicação óptima em três zonas do estuário num total de 12,74 km², correspondente a 18% da área de estudo considerada no estuário do Sado e linha costeira imediatamente adjacente (Figura 23). O método apresenta ainda uma aplicabilidade razoável num total de 13,50 km² (19% da área de estudo) e uma área de aplicabilidade fraca de 25,2 km² (35% da área de estudo) devido à distância aos pontos de observação, e de 1,44 km² (2% da área de estudo) devido ao efeito da colinearidade.
Figura 23 - Mapa de aplicabilidade do método goniométrico no estuário do Sado e linha costeira imediatamente adjacente
Discussão

No canal Norte foram registados apenas 1,4% dos posicionamentos, sendo um dos valores mais altos registados quando em comparação com a informação disponível na literatura: Brito (2012) e Grilo (2010) obtiveram um total de 100% dos posicionamentos registados no canal Sul, enquanto Augusto (2007) obteve 99% de posicionamentos neste canal. Por outro lado, Cândido (2003) obteve 0,4% de posicionamentos no canal Norte e Ferreira (2010) obteve 3% de posicionamentos neste mesmo canal.

Referentemente aos resultados obtidos sobre a utilização espacial do estuário pela população residente de roazes, será importante revelar possíveis erros aquando da marcação de linhas referentes aos azimutes medidos no Google Earth Pro, erros que poderão ser desprezados devido ao tamanho da área de amostragem. É necessário salientar que nos dias de amostragem em que não ocorreu a observação de roazes, tal poderá ter sido devido ao facto de a sua presença no estuário ter ocorrido em períodos anteriores ou posteriores ao de observação ou pelo facto de não terem entrado no estuário nesse dia.

Neste estudo verificou-se que o método goniométrico apresenta diferentes aplicabilidades para diferentes zonas da área de amostragem. A aplicabilidade óptima do método foi de aproximadamente 18%, sendo que 38% dos dados de posicionamentos reais de roazes amostrados, que recaem fora desta zona de aplicabilidade, terão de ser excluídos da amostragem para estudos mais detalhados que necessitem de um posicionamento mais rigoroso. Tal revela-se como uma desvantagem deste método na detectabilidade e posicionamento de roazes na maioria do estuário do Sado e linha costeira imediatamente adjacente, uma vez que a extensão da área de estudo é condicionada à partida pelo uso de um método de observação a partir de pontos em terra, em comparação com a potencial extensão
possível de amostrar a bordo de embarcações ou por meio aéreo, como ocorre em estudos em outros locais do mundo (Berrow et al. 1996, Evans e Hammond 2004).

É de salientar que foi excluída do mapa de aplicabilidade do método uma zona referente à zona mais próxima da linha costeira imediatamente adjacente ao estuário que ultrapassa o limite de leitura do método a partir do Forte de S. Filipe, uma vez que não existem certezas sobre a visibilidade da superfície do estuário nesta zona, pelo que a aplicação da equação da área do paralelogramo de incerteza associado a cada ponto não é possível.

O método goniométrico demostra ainda algumas vantagens por permitir uma observação dos roazes e seus comportamentos a longa distância (não interagindo com os roazes) e a metodologia não exigir treino dos observadores. Poderá assim ser utilizado em estudos que não exigam tanto detalhe e que possam compreender uma aplicabilidade fraca ou razoável do método, como o estudo do padrão geral de utilização espacial do estuário pela população residente de roazes efectuados neste trabalho. No entanto, não permite um posicionamento rigoroso de alvos na maioria da área do estuário.

A aplicabilidade do método é afectada pela existência de ângulos mortos de observação a partir dos pontos das margens selecionados, pela existência de colinearidade inerente ao método e devido à distância do alvo aos pontos de observação escolhidos.

Referentemente aos ângulos mortos de observação a partir do ponto de observação do Forte de S. Filipe, um dos três ângulos que abrangem a zona costeira imediatamente adjacente ao estuário não será relevante na delimitação da aplicabilidade do método. O ângulo morto de observação referente ao Aqualuz Suite Hotel coincide com o ângulo morto de observação a partir do ponto de observação do terraço do Tróia Design Hotel (referente à própria estrutura do hotel), pelo que será o último a ser contabilizado na elaboração do mapa de aplicabilidade do método, visto o ponto de observação do terraço do Tróia Design Hotel permitir uma observação mais aproximada e por isso com maior rigor da zona em análise.

O ângulo morto de observação a partir do ponto de observação do terraço do Tróia Design Hotel, correspondente à zona do “recanto do verde” não foi obtido apenas a partir da definição do azimute correspondente ao valor limite em que a observação da superfície do estuário deixava de ser possível, mas também por estimativa a partir de um ponto de referência na margem do estuário (novos cais dos ferries). Consequentemente, apresenta um maior nível de erro do que os restantes ângulos definidos neste estudo.
Brito (2012) referiu que a análise dos posicionamentos de roazes (obtidos a partir do mesmo método goniométrico deste trabalho) revelou uma utilização do ambiente estuarino até cerca de 10 km para o interior do estuário. Seria assim de esperar que se mantivesse este valor de limite de leitura de 10 km para o limite testado neste trabalho, o que se comprovou. Verificou-se que a área de aplicabilidade do método goniométrico será maior no posicionamento de embarcações (limite de leitura no interior do estuário de 11 km) do que no posicionamento de roazes (limite de leitura no interior do estuário de 10 km). Tal pode ser explicado pela maior proeminência das embarcações para além da superfície da água, em contraste com a menor conspicuidade dos roazes (visto as dimensões do mastro de um veleiro, por exemplo no caso de uma das embarcações marítimo-turísticas mais observadas – Vertigem Azul – serem muito superiores às dimensões do dorso de um roaz). Nos pontos analisados correspondentes à localização máxima registável das embarcações Vertigem Azul e Costa azul foi possível observar roazes próximos das embarcações. No entanto, não existia precisão suficiente para o seu posicionamento, devido a fracas condições de visibilidade (demasiada luminosidade e agitação da superfície) que impediam a observação nítida da superfície do estuário. Assim, existirá um limite para a distância máxima a que os roazes poderão ser observados tendo em conta os pontos de observação escolhidos.

Foi verificado o padrão de resultados esperados para o efeito da colinearidade na aplicabilidade do método, existindo uma maior área de erro associada a pontos fictícios localizados imediatamente adjacentes à recta de colinearidade e a pontos mais distantes dos pontos de observação.

Apesar de terem sido obtidas três zonas de elevado erro para cada um dos locais de análise, apenas duas das áreas foram excluídas devido ao efeito da colinearidade, pois as restantes encontram-se distantes dos pontos de observação e da recta de colinearidade apresentando novamente áreas de erro muito grandes, o que se deve ao facto de o paralelogramo de erro aumentar a sua área com o aumento da distância. Assim, este nível de erro não se deverá ao efeito da colinearidade na aplicabilidade do método goniométrico.

No geral foram obtidos valores de área de erro elevados tendo em conta as dimensões dos alvos em estudo (um roaz apresenta dimensões entre os 2 e os 4 metros (Jefferson et al. 2008)). Foram ainda verificados valores muito elevados de erro associados aos pontos fictícios nos extremos da grelha de análise, o que poderá ser explicado pelo facto destes posicionamentos se encontrarem aproximadamente horizontais em relação aos pontos de
observação, o que tem interferência na fórmula de cálculo do erro do paralelogramo associado.
A distância do alvo aos pontos de observação será, no entanto, o factor mais determinante na extensão da área de aplicabilidade do método goniométrico na área de estudo, visto que a maioria desta área se encontra a distâncias consideráveis dos pontos de observação.
A aplicabilidade verificada será restrita ao limite de leitura do método de dez quilómetros no interior do estuário e limitada pela existência de sete ângulos mortos de observação a partir do Forte de S. Filipe e do terraço do Tróia Design Hotel, de duas áreas de incerteza na recolha de dados devido à existência de colinearidade e de três zonas de incerteza devido à distância entre o alvo e os pontos de observação.
Considerações finais

O método goniométrico apresenta uma aplicabilidade de 18% da área de estudo considerada no estuário do Sado e linha costeira imediatamente adjacente, pelo que será um método pouco recomendável para estudos em que o rigor na observação e posicionamento de alvos na superfície do estuário e linha costeira imediatamente adjacente sejam necessários.

O conhecimento sobre a aplicabilidade do método obtido neste estudo poderá assim contribuir para uma melhoria na metodologia usada na monitorização da população de roazes, podendo contribuir ainda que em pormenor, para uma melhor definição das estratégias de conservação de protecção da única população residente de roazes em Portugal.

A aplicabilidade do método poderá ser melhorada com a realização de uma campanha de amostragem para validação dos valores limite onde a observação da superfície do estuário deixa de ser possível devido à existência de ângulos mortos de observação a partir dos pontos de observação na zona do “recanto do verde” e na zona costeira marinha de Tróia, adjacente e exterior ao estuário, onde a aplicabilidade do método se revelou seriamente afectada. Recorrendo a uma embarcação com um receptor de GPS a bordo de maneira a permitir um maior rigor na definição da área de não aplicabilidade do método, seria depois feita a análise das distâncias entre as leituras já realizadas por goniometria e as medições realizadas com o GPS.

Poderiam ser alterados os pontos de observação ou usados dois pontos adicionais na observação e posicionamento de roazes, de maneira a tentar ultrapassar o limite de leitura do método verificado como 10 km no interior do estuário e a diminuir o efeito da distância entre o alvo e os pontos de observação na aplicabilidade do método. Sugere-se que adicionalmente sejam utilizados os pontos de observação da Capela do Parque da Belavista (38°31,073’N; 08°51,805’W) e Cais da APSS (38°29,732’N; 08°50,271’W), na margem norte do estuário, utilizados no estudo em que o método goniométrico foi descrito e validado para uso no estuário do Sado (Andrade et al. 2012).

Seria também importante a elaboração de um estudo da influência das condições de luz e da agitação da água na observação e posicionamento dos alvos na superfície do estuário utilizando o método goniométrico, de maneira a tentar produzir limiares de valores e um gradientes associados à qualidade de observação nestas situações.
Referências bibliográficas*

IMAR 2013, O Dolphin Watch no estuário do Sado: avaliação do esforço sobre a população residente de roazes (Tursiops truncatus) e abordagem ao estabelecimento de uma capacidade de carga – Primeiro Relatório de Progresso

Leatherwood, S. e R.R. Reeves, eds. The Bottlenose Dolphin. Academic Press, São Diego, EUA.

As referências bibliográficas estão de acordo com as normas propostas pela Marine Mammals Science.
Anexo A

Campanhas de amostragem

<table>
<thead>
<tr>
<th>Data</th>
<th>Dia da semana</th>
<th>Objectivo da campanha</th>
<th>Observação de roazes</th>
<th>Amplitude da maré (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-mai-13</td>
<td>Quinta-feira</td>
<td>Verificação de pontos de observação e teste à metodologia</td>
<td>Não</td>
<td>1,6</td>
</tr>
<tr>
<td>09-jun-13</td>
<td>Domingo</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>2,3</td>
</tr>
<tr>
<td>19-jun-13</td>
<td>Quarta-feira</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>2</td>
</tr>
<tr>
<td>30-jun-13</td>
<td>Domingo</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>1,75</td>
</tr>
<tr>
<td>06-jul-13</td>
<td>Sábado</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>2</td>
</tr>
<tr>
<td>19-jul-13</td>
<td>Sexta-feira</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>2,1</td>
</tr>
<tr>
<td>22-jul-13</td>
<td>Segunda-feira</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>3</td>
</tr>
<tr>
<td>30-jul-13</td>
<td>Terça-feira</td>
<td>Utilização do estuário</td>
<td>Não</td>
<td>1,8</td>
</tr>
<tr>
<td>10-ago-13</td>
<td>Sábado</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>2,5</td>
</tr>
<tr>
<td>20-ago-13</td>
<td>Terça-feira</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>2,9</td>
</tr>
<tr>
<td>24-ago-13</td>
<td>Sábado</td>
<td>Utilização do estuário</td>
<td>Não</td>
<td>3</td>
</tr>
<tr>
<td>27-ago-13</td>
<td>Terça-feira</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>1,9</td>
</tr>
<tr>
<td>07-set-13</td>
<td>Sábado</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>2,9</td>
</tr>
<tr>
<td>15-set-13</td>
<td>Domingo</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>2</td>
</tr>
<tr>
<td>26-set-13</td>
<td>Quinta-feira</td>
<td>Utilização do estuário</td>
<td>Não</td>
<td>1,4</td>
</tr>
<tr>
<td>09-out-13</td>
<td>Quarta-feira</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>2,6</td>
</tr>
<tr>
<td>30-out-13</td>
<td>Quarta-feira</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>1,7</td>
</tr>
<tr>
<td>17-nov-13</td>
<td>Domingo</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>2,6</td>
</tr>
<tr>
<td>25-nov-13</td>
<td>Segunda-feira</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>1,3</td>
</tr>
<tr>
<td>03-dez-13</td>
<td>Terça-feira</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>3,2</td>
</tr>
<tr>
<td>16-dez-13</td>
<td>Sábado</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>2,4</td>
</tr>
<tr>
<td>09-jan-14</td>
<td>Domingo</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>1,6</td>
</tr>
<tr>
<td>01-jun-14</td>
<td>Domingo</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>2,1</td>
</tr>
<tr>
<td>12-ago-14</td>
<td>Terça-feira</td>
<td>Utilização do estuário</td>
<td>Sim</td>
<td>3,4</td>
</tr>
</tbody>
</table>
Anexo B

Condições climatéricas e de marés que impediram a aplicabilidade do método goniométrico no estuário do Sado a um dado momento

<table>
<thead>
<tr>
<th>Data</th>
<th>Hora</th>
<th>Altura do Sol (°)</th>
<th>Direcção do Sol (coord.)</th>
<th>Temperatura Ar (°C)</th>
<th>Humidade Ar (%)</th>
<th>Radiação Total (kJ/m²)</th>
<th>Pluviosidade Total (mm)</th>
<th>Velocidade Vento 2.5 (m/s)</th>
<th>Amplitude da maré (m)</th>
<th>Velocidade da maré (m/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-jun-13</td>
<td>12:09</td>
<td>73,53</td>
<td>S</td>
<td>16,65</td>
<td>77,6</td>
<td>63,51</td>
<td>0</td>
<td>3,946</td>
<td>2,3</td>
<td>0,38</td>
</tr>
<tr>
<td>30-jun-13</td>
<td>14:32</td>
<td>61,52</td>
<td>NO</td>
<td>23,14</td>
<td>66,09</td>
<td>277,79</td>
<td>0</td>
<td>3,483</td>
<td>1,75</td>
<td>0,29</td>
</tr>
<tr>
<td>06-jul-13</td>
<td>10:23</td>
<td>56,76</td>
<td>SO</td>
<td>29,83</td>
<td>33,48</td>
<td>196,93</td>
<td>0</td>
<td>2,222</td>
<td>2</td>
<td>0,34</td>
</tr>
<tr>
<td>19-jul-13</td>
<td>13:50</td>
<td>66,99</td>
<td>NO</td>
<td>21,43</td>
<td>66,99</td>
<td>282,15</td>
<td>0</td>
<td>6,623</td>
<td>2,1</td>
<td>0,35</td>
</tr>
<tr>
<td>17-nov-13</td>
<td>11:50</td>
<td>31,98</td>
<td>O</td>
<td>14,87</td>
<td>49,14</td>
<td>165,4</td>
<td>0</td>
<td>3,349</td>
<td>2,6</td>
<td>0,44</td>
</tr>
<tr>
<td>17-nov-13</td>
<td>12:45</td>
<td>32,13</td>
<td>O</td>
<td>16,92</td>
<td>41,63</td>
<td>203,75</td>
<td>0</td>
<td>1,185</td>
<td>2,6</td>
<td>0,44</td>
</tr>
</tbody>
</table>

Os dados de altura e direcção do sol foram obtidos a partir de uma aplicação na Internet (Sunearthtools.com) que calcula a posição do sol para uma hora e coordenadas geográficas específicas.

Os dados de amplitude e velocidade da maré foram calculados a partir dos valores constantes da Tabela de Marés do Instituto Hidrográfico.

Os restantes dados climatéricos foram obtidos a partir da estação meteorológica que funciona na península de Tróia ao abrigo do programa de monitorização ambiental do projecto da marina e novo cais dos ferries do Troia Resort.