Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults

NCD Risk Factor Collaboration (NCD-RisC)*

Summary

Background Underweight, overweight, and obesity in childhood and adolescence are associated with adverse health consequences throughout the life-course. Our aim was to estimate worldwide trends in mean body-mass index (BMI) and a comprehensive set of BMI categories that cover underweight to obesity in children and adolescents, and to compare trends with those of adults.

Methods We pooled 2416 population-based studies with measurements of height and weight on 128·9 million participants aged 5 years and older, including 31·5 million aged 5–19 years. We used a Bayesian hierarchical model to estimate trends from 1975 to 2016 in 200 countries for mean BMI and for prevalence of BMI in the following categories for children and adolescents aged 5–19 years: more than 2 SD below the median of the WHO growth reference for children and adolescents (referred to as moderate and severe underweight hereafter), 2 SD to more than 1 SD below the median (mild underweight), 1 SD below the median to 1 SD above the median (healthy weight), more than 1 SD to 2 SD above the median (overweight but not obese), and more than 2 SD above the median (obesity).

Findings Regional change in age-standardised mean BMI in girls from 1975 to 2016 ranged from virtually no change (–0·01 kg/m² per decade; 95% credible interval –0·42 to 0·39, posterior probability [PP] of the observed decrease being a true decrease=0·5098) in eastern Europe to an increase of 1·00 kg/m² per decade (0·69–1·35, PP>0·9999) in central Latin America and an increase of 0·95 kg/m² per decade (0·64–1·25, PP>0·9999) in Polynesia and Micronesia. The range for boys was from a non-significant increase of 0·09 kg/m² per decade (–0·33 to 0·49, PP=0·6926) in eastern Europe to an increase of 0·77 kg/m² per decade (0·50–1·06, PP>0·9999) in Polynesia and Micronesia. Trends in mean BMI have recently flattened in northwestern Europe and the high-income English-speaking and Asia-Pacific regions for both sexes, southwestern Europe for boys, and central and Andean Latin America for girls. By contrast, the rise in BMI has accelerated in east and south Asia for both sexes, and southeast Asia for boys. Global age-standardised prevalence of obesity increased from 0·7% (0·4–1·2) in 1975 to 5·6% (4·8–6·5) in 2016 in girls, and from 0·9% (0·5–1·3) in 1975 to 7·8% (6·7–9·1) in 2016 in boys; the prevalence of moderate and severe underweight decreased from 9·2% (6·0–12·9) in 1975 to 8·4% (6·8–10·1) in 2016 in girls and from 14·8% (10·4–19·5) in 1975 to 12·4% (10·3–14·5) in 2016 in boys. Prevalence of moderate and severe underweight was highest in India, at 22·7% (16·7–29·6) among girls and 30·7% (23·5–38·0) among boys. Prevalence of obesity was more than 30% in girls in Nauru, the Cook Islands, Nauru, Palau, Niue, and American Samoa in 2016. Prevalence of obesity was about 20% or more in several countries in Polynesia and Micronesia, the Middle East and north Africa, the Caribbean, and the USA. In 2016, 75 (44–117) million girls and 117 (70–178) million boys worldwide were moderately or severely underweight. In the same year, 50 (24–89) million girls and 74 (39–125) million boys worldwide were obese.

Interpretation The rising trends in children’s and adolescents’ BMI have plateaued in many high-income countries, albeit at high levels, but have accelerated in parts of Asia, with trends no longer correlated with those of adults.

Funding Wellcome Trust, AstraZeneca Young Health Programme.

Introduction Being underweight, overweight, or obese during childhood and adolescence is associated with adverse health consequences throughout the life-course. Underweight among children and adolescents is associated with higher risk of infectious diseases, and for girls of childbearing age, is associated with adverse pregnancy outcomes including maternal mortality, delivery complications, preterm birth, and intrauterine growth retardation. Preventing and reversing excess weight in children and adolescents is also important for many reasons; first, weight loss and maintenance after weight loss are hard to achieve, therefore gaining excess weight in childhood and adolescence is likely to lead to
Research in context

Evidence before this study

We identified three prior global analyses of mean body-mass index (BMI) or prevalence of overweight and obesity among adults. One of these studies also estimated the prevalence of underweight in adults. Another study also included data on overweight and obesity in children and adolescents, using a combination of measured and self-reported height and weight, and analysed in the same model as adults. A few multicountry studies and systematic reviews have reported, quantitatively or qualitatively, trends in overweight and obesity in children and adolescents, some also reporting underweight. To our knowledge, there is no global analysis of mean BMI, which is a summary measure of population distribution, or prevalence of underweight among children and adolescents aged 5–19 years.

Added value of this study
This study provides a complete picture of trends in mean BMI and prevalence of BMI categories that cover the underweight to obese range among children and adolescents aged 5–19 years, for all countries in the world with the longest observation period, and compares trends with those of adults. It includes the first global estimates of mean BMI and underweight prevalence for children and adolescents. We also present trends in the number of children, adolescents, and adults who are moderately or severely underweight and obese, and thus at risk of adverse health outcomes.

Implications of all the available evidence
Over the past four decades, mean BMI and obesity in children and adolescents aged 5–19 years have increased in most regions and countries. Despite this rise, more children and adolescents are moderately or severely underweight than obese, with the burden of underweight increasingly concentrated in south Asia and central, east and west Africa. The rise in children’s and adolescents’ BMI has plateaued, albeit at high levels, in many high-income countries but has accelerated in parts of Asia. There is a need for bridging the disconnect between policies that address underweight and overweight in children and adolescents to coherently address the large remaining underweight burden while curbing and reversing the rise in overweight and obesity.

lifelong overweight and obesity. Second, being overweight in childhood and adolescence is associated with greater risk and earlier onset of chronic disorders such as type 2 diabetes. Third, childhood and adolescent obesity has adverse psychosocial consequences and lowers educational attainment. Finally, children and adolescents are more susceptible to food marketing than adults, which makes reducing children’s exposure to obesogenic foods necessary to protect them from harm.

Although trends in children’s and adolescents’ weight status have been documented in individual countries, little comparable information exists on worldwide trends, and none for mean body-mass index (BMI) and underweight. We pooled population-based data to estimate trends from 1975 to 2016 in mean BMI and in the prevalence of a comprehensive set of BMI categories that cover the underweight to obese range among children and adolescents for all countries in the world. To compare the trajectory of obesity and underweight in children and adolescents with that of adults, we also generated updated estimates for adults.

Methods

Study design
We pooled and analysed population-based studies that had measured height and weight in people aged 5 years and older to estimate trends from 1975 to 2016 in mean BMI and BMI categories in 200 countries and territories (appendix). We started our analysis from 5 years of age because the definitions of underweight, overweight, and obesity change at 5 years of age. Further, children enter school at or around this age, which is associated with a change in their nutrition and physical activity.

We present data on school-aged children and adolescents aged 5–19 years and on adults aged 20 years and older. We did separate analyses for children and adolescents and for adults for two reasons: first, cutoffs used to define underweight, overweight, and obesity for children and adolescents are different from those for adults and vary by age and sex because of the natural growth in childhood and adolescence. Second, the trajectory of the obesity epidemic in children and adolescents might be different from that of adults, motivating separate analyses of trends. Similarly, underweight in children and adolescents is typically targeted through school and community-based nutrition programmes, decoupling its trajectory from that of adults.

For children and adolescents, we analysed trends in mean BMI and prevalence of BMI in the following categories: more than 2 SD below the median of the WHO growth reference for children and adolescents (hereafter referred to as moderate and severe underweight), 2 SD to more than 1 SD below the median (mild underweight), 1 SD below the median to 1 SD above the median (healthy
Figure 1: Trends in age-standardised mean BMI by sex and region in females

Children and adolescents were aged 5–19 years and adults were aged 20 years and older. The lines show the posterior mean estimates and the shaded areas show the 95% credible intervals. See appendix for trends by country. BMI=body-mass index.
Figure 2: Trends in age-standardised mean BMI by sex and region in males

Children and adolescents were aged 5–19 years and adults were aged 20 years and older. The lines show the posterior mean estimates and the shaded areas show the 95% credible intervals.

See appendix for trends by country. BMI=body-mass index.
weight), more than 1 SD to 2 SD above the median (overweight but not obese), and more than 2 SD above the median (obesity). The cutoffs for calculating prevalence in these BMI categories were all age-specific and sex-specific and were applied to data in 1-year age bands. We used the WHO definitions because they include a comprehensive set of BMI categories ranging from moderate and severe underweight to obesity, defined based on symmetric thresholds of SDs from the reference population median.

For adults, we analysed trends in mean BMI and prevalence of a comprehensive set of BMI categories as described in detail elsewhere and in the appendix. Results for children and adolescents are presented here; updated results for adults are presented in the appendix except when compared with children and adolescents.

Data sources

Our methods for identifying and accessing data sources, and our inclusion and exclusion criteria, are described in the appendix. In summary, we used a database of population-based data on cardiometabolic risk factors collated by the Non-communicable Disease Risk Factor Collaboration (NCD-RisC), a worldwide network of health researchers and practitioners whose aim is to document systematically the worldwide trends and variations in non-communicable disease risk factors. The database was collated through multiple routes for identifying and accessing data. We accessed publicly available population-based multi-country and national measurement surveys, as well as the WHO STEPSwise approach to Surveillance (STEPS) surveys. We requested, via WHO and its regional and country offices, help with identification and access to population-based surveys from ministries of health and other national health and statistical agencies. We also sent requests via the World Heart Federation to its national partners. We made a similar request to the authors of an earlier pooled analysis of cardiometabolic risk factors, and invited them to reanalyse data from their studies and join NCD-RisC. To identify major sources not accessed through the above routes, we searched and reviewed published studies as detailed previously, and invited all eligible studies to join NCD-RisC. Finally, NCD-RisC members were periodically asked to review the list of sources from their country, to suggest additional sources not in the database, and to verify that the included data from their country met the inclusion criteria as listed in the appendix and that there were no duplicates.

The list of data sources and their characteristics is provided in the appendix. In summary, we included data collected on samples of a national, subnational (ie, covering one or more subnational regions, or more than three communities), or community (one or a few communities) population, which had measured height and weight. We did not use self-reported height and weight because they are subject to biases that vary by geography, time, age, sex, and socioeconomic characteristics. Because of these variations, approaches to correcting self-reported data leave residual bias.

Statistical analysis

The statistical models used to estimate mean and prevalence by country, year, sex, and age are described in detail in a statistical paper and related substantive papers. The computer code is available from the NCD-RisC website. In summary, we organised countries into 21 regions, mostly based on geography and national income (appendix). The exception was high-income English-speaking countries (Australia, Canada, Ireland, New Zealand, the UK, and the USA), grouped together in one region because BMI and other cardiometabolic risk factors have similar trends in these countries, which can be distinct from other countries in their geographical regions.

The model had a hierarchical structure in which estimates for each country and year were informed by its own data, if available, and by data from other years in the same country and from other countries, especially those in the same region with data for similar time periods. The extent to which estimates for each country-year were influenced by data from other years and other countries depended on whether the country had data, the sample size of data, whether or not they were national, and the within-country and within-region variability of the available data. The model incorporated non-linear time trends comprising linear terms and a second-order random walk, all modelled hierarchically. The age association of BMI was modelled using a cubic spline to allow non-linear age patterns, which might vary across countries. The model accounted for the possibility that BMI in subnational and community samples might systematically differ from nationally representative ones, and have larger variation than in national studies. These features were implemented by including data-driven fixed-effect and random-effect terms for subnational and community data. The fixed effects adjusted for systematic differences between subnational or community studies and national studies. The random effects allowed national data to have larger influence on the estimates than subnational or community data with similar sample sizes.

The model also accounted for rural–urban differences in BMI, through the use of data-driven fixed effects for rural-only and urban-only studies. These rural and urban effects were weighted by the difference between study-level and country-level urbanisation in the year when the study was done. The statistical model included a covariate (proportion of national population living in urban areas; data from the World Urbanization Prospects, 2014 revision) that is associated with, and helps predict, BMI. Results of model validation are reported elsewhere.

We performed all analyses by sex, because there are differences in BMI levels and trends in relation to sex.

We analysed the data on mean BMI and on each of the above prevalence categories separately. We re-scaled the...
Figure 3: Age-standardised mean BMI, prevalence of obesity, and prevalence of moderate and severe underweight by sex and country in 2016 in children and adolescents. Children and adolescents were aged 5–19 years. Obesity was defined as more than 2 SD above the median of the WHO growth reference. Moderate and severe underweight was defined as more than 2 SD below the median. See appendix for results for adults. BMI=body-mass index.
estimated prevalence categories so that the sum of different categories was 1·0 in each age, sex, country, and year. The average scaling factors across draws ranged from 1·03 to 1·07, ie, the sum of the separately estimated prevalence categories was close to 1·0.

We fitted the statistical model with the Markov chain Monte Carlo (MCMC) algorithm, and obtained 5000 post-burn-in samples from the posterior distribution of model parameters, which were in turn used to obtain the posterior distributions of the above primary outcomes, ie, mean BMI and each of the prevalence categories. For model fitting, data on participants aged 5–19 years were included in the analysis of trends in children and adolescents, and on participants aged 18 years and older in the analysis of trends in adults. Data on participants aged 18 and 19 years were included in both sets of models because these groups form a transitional age from adolescence to adulthood, and hence help inform the estimates in both groups. Posterior estimates were made in 1-year age groups for ages 5–19 years and in 5-year age groups for those aged 20 years and older. For presentation, we used the posterior estimates for ages 5–19 years for children and adolescents, and for ages 20 years and older for adults.

Age-standardised estimates were generated by taking weighted averages of age-sex-specific estimates, separately for children and adolescents and for adults, with use of age weights from the WHO standard population.30 Estimates for regions and the world were calculated as population-weighted averages of the constituent country estimates by age group and sex. The number of children, adolescents, and adults who were underweight, overweight, or obese was calculated by multiplying the corresponding age-specific prevalence by the population by country, year, and sex.

The reported credible intervals (CrI) represent the 2·5th to 97·5th percentiles of the posterior distributions. The uncertainties of our estimates, represented by the widths of the credible intervals, arise from uncertainty due to sampling in each data source; uncertainty associated with the variability of national data beyond what is accounted for by sampling; additional uncertainty associated with subnational and community data, and data that are from rural-only or urban-only samples; and uncertainty due to making estimates by country, year, and age when data were missing or scarce, in the country-year-age group unit for which estimates are made, in proximate time periods and ages in that country and in other countries in the same region. We also report the posterior probability (PP) that an estimated increase or decrease represents a truly increasing or decreasing trend.

Role of the funding source
The funder of the study had no role in study design, data collection, analysis, interpretation, or writing of the report. Country and Regional Data Group members, JB, MDC, VB, HB, and BZ had full access to the data in the study. The corresponding author had final responsibility for the decision to submit for publication.

Results
The results can be explored using dynamic visualisations and downloaded from the NCD-RisC website. We pooled 2416 population-based data sources with measurement of height and weight on 128·9 million people aged 5 years and older from 1975 to 2016 (appendix). 1099 sources included data on 24·1 million participants aged 5–17 years, 848 sources included data on 7·4 million participants aged 18–19 years, and 1820 sources included data on 97·4 million participants aged 20 years and older (appendix). Additional information on the age distribution of data sources and participants is shown in the
From 1975 to 2016, children’s and adolescents’ age-standardised mean BMI increased globally and in most regions (figures 1 and 2). The global increase was 0·32 kg/m² per decade (95% CrI 0·23–0·41, PP of the observed increase being a true increase>0·9999) for girls and 0·40 kg/m² per decade (0·30–0·50, PP>0·9999) for boys, leading to virtually identical age-standardised mean BMIs of 18·6 kg/m² (18·4–18·7) for girls and 18·5 kg/m² (18·3–18·7) for boys in 2016. The corresponding figures for adults were 24·8 kg/m² (24·6–25·0) in women and 24·5 kg/m² (24·3–24·6) in men.

Regional change in girls ranged from virtually no change (–0·01 kg/m² per decade [95% CrI –0·42 to 0·39; PP of the observed decrease being a true decrease=0·5098]) in eastern Europe to 1·00 kg/m² per decade (0·69–1·35, PP>0·9999) in central Latin America and 0·95 kg/m² per decade (0·64–1·25, PP=0·9999) in Polynesia and Micronesia. The range for boys was from 0·09 kg/m² per decade (–0·33 to 0·49; PP=0·6926) in eastern Europe to 0·77 kg/m² per decade (0·50–1·06, PP>0·9999) in Polynesia and Micronesia. In some regions, children’s and adolescents’ BMI increased gradually over the four decades of analysis (figures 1 and 2). However, there has been a recent flattening of trends in northwestern Europe and the high-income English-speaking and Asia-Pacific regions for both sexes, southwestern Europe for boys, and central and Andean Latin America for girls. With the exception of women in the high-income Asia-Pacific region, adult mean BMI continues to increase in all of these regions and sexes (figures 1 and 2). By contrast with this plateauing, the rise in mean BMI has accelerated since around 2000 in east and south Asia for both sexes, and in southeast Asia for boys.

The lowest mean child and adolescent BMIs in 2016 were still those in south Asia and east Africa, with age-standardised mean BMIs between 16·9 and 17·9 kg/m² for girls and boys; the highest were those in Polynesia and Micronesia for both sexes, followed by Melanesia and the high-income English-speaking region. Age-standardised mean BMIs of girls and boys in Polynesia and Micronesia, which were 23·1 kg/m² (95% CrI 22·4–23·8) and 22·4 kg/m² (21·6–23·1), respectively, were higher than those of adults in some regions. Children’s and adolescents’ age-standardised mean BMI was also more than 20 kg/m² in Melanesia and many parts of Latin America and the Caribbean.

The regional rankings in 2016 differed slightly between children aged 5–9 years and adolescents aged 10–19 years (appendix). For example, the lowest mean BMI in children aged 5–9 years was seen in east Africa in both sexes, whereas in those aged 10–19 years, south Asian girls and boys had lower mean BMI than their African peers. Polynesians and Micronesians had the highest mean BMI in those aged 5–9 and 10–19 years, with the subsequent spots held by the high-income English-speaking region, regions in Latin America and the

Figure 5: Comparison of age-standardised mean BMI in children and adolescents and in adults
Children and adolescents were aged 5–19 years and adults were aged 20 years and older. Each point shows one country. The dotted line shows the linear association between the two outcomes. BMI=body-mass index.
Caribbean, and Melanesia. Among these regions, central Latin America had a poorer ranking (ie, higher BMI relative to other regions) at age 10–19 years than at age 5–9 years, as did boys in the high-income English-speaking region. By contrast, east Asia performed worse in ranking in 5–9 years of age than it did in 10–19 years.

The lowest age-standardised mean BMI over the 42 years of analysis among girls was in Bangladesh in 1975 (15·6 kg/m², 95% CrI 13·2–17·9), and among boys was in Ethiopia in 1975 (14·4 kg/m², 11·9–17·0; figures 3 and 4). Age-standardised mean BMI in 1975 was less than 21 kg/m² in every country, except for girls in American Samoa, who had an age-standardised mean BMI of 21·2 kg/m² (20·6–21·9). From 1975 to 2016, age-standardised mean BMI increased by more than 0·25 kg/m² per decade in 155 countries in girls, with the rise more than 1·0 kg/m² per decade in some countries in Polynesia and in Mexico (PP of being a true rise>0·9999); in boys, the rise was more than 0·25 kg/m² per decade in 189 countries and more than 1·0 kg/m² per decade in the Cook Islands. When subsets of the analysis period are considered, before the year 2000, age-standardised mean BMI increased in almost every country. After 2000, there were non-significant declines in mean BMI in 29 countries for girls and 12 (mostly high-income) countries for boys.

In 2016, Ethiopia had the lowest age-standardised mean BMI for both sexes, 16·8 kg/m² (95% CrI 15·6–17·9) for girls and 15·5 kg/m² (14·4–16·6) for boys (figures 3 and 4). Other countries with low BMI in both sexes in 2016 were Niger, Senegal, India, Bangladesh, Myanmar, and Cambodia. At the other extreme, age-standardised mean BMI was more than 24 kg/m² in girls and boys in the Cook Islands and Niue and girls in Samoa, which was greater than that for adults of the same sex in 36 countries for girls and 59 countries for boys. Age-standardised mean BMI was between 22 and 24 kg/m² in another 11 countries for girls and 10 countries for boys including in Polynesian and Micronesian islands, girls in the Bahamas and Chile, and boys in Qatar and Kuwait.

The age-standardised BMI for children and adolescents and for adults were correlated in 1975 and 2016 (correlation coefficients 0·80 and 0·85 for females and 0·92 and 0·89 for males; figure 5). Changes in age-standardised mean BMI were moderately correlated between the two age groups before 2000 (correlation coefficient 0·52 for females and 0·51 for males) but only weakly after 2000 (correlation coefficient 0·14 for females and 0·21 for males; figure 6). The decoupling of BMI trends in children and adolescents and those of adults is due to a set of distinct regional phenomena: adults continued to gain weight in most western countries, where children’s and adolescents’ mean BMI stopped rising. By contrast, the rise in adult BMI seems to have plateaued in Oceania, albeit at high levels, whereas children’s and adolescents’ BMI continues to rise. In Latin America and the Caribbean, there is more variation in the rate of BMI increase in children and adolescents than in adults.

In 1975, girls had higher age-standardised mean BMI than boys in most countries in sub-Saharan Africa, south Asia, and the Middle East and north Africa, and lower age-standardised mean BMI than boys in many countries in Europe and Latin America and the Caribbean (figure 7). Higher BMI in girls than boys was still seen in 2016 in many sub-Saharan African and south Asian countries. By contrast, the gap between sexes in BMI in the Middle East and north Africa shrank or reversed as boys gained more weight than girls. In Europe and Latin America, girls gained more weight than boys, closing the gap between sexes in BMI.

Over the 42 years of analysis, the global age-standardised prevalence of obesity in children and adolescents increased from 0·7% (95% CrI 0·4–1·2) in 1975 to 5·6% (4·8–6·5) in 2016 in girls (figure 8), and from 0·9% (0·5–1·3) in 1975 to 7·8% (6·7–9·1) in 2016 in boys (figure 9). Obesity increased in every region, with proportional rise being smallest in high-income regions (on average 30–50% per decade) and largest in southern Africa (about 400% per decade, albeit from very low levels).
Globally, the prevalence of moderate and severe underweight changed less than the rise in obesity, from 9·2% (95% CrI 6·0–12·9) in 1975 to 8·4% (6·8–10·1) in 2016 in girls and from 14·8% (10·4–19·5) in 1975 to 12·4% (10·3–14·5) in 2016 in boys. The relatively small change in moderate and severe underweight prevalence at the global level, however, was partly due to faster population growth in regions where underweight prevalence is higher (eg, the share of children and adolescents living in south Asia, where prevalence is highest, increased from 20·5% in 1975 to 26·4% in 2016 in girls, and 21·1% in 1975 to 27·1% in 2016 in boys) while prevalence declined in most regions. The largest proportional decline in the prevalence of moderate and severe underweight occurred in Polynesia and Micronesia and in southern Africa in both sexes, where prevalence declined by an average of up to one third per decade for girls and by about one fifth per decade for boys from 1975 to 2016 (figures 8 and 9). There was a non-significant rise of about 6% per decade (PP=0·6630) in underweight in girls in southeast Asia. Nonetheless, in most regions, the increase in the prevalence of overweight and obesity was larger than the decline in the prevalence of underweight (figures 8 and 9), ie, the width of the BMI distribution increased.

Regionally, moderate and severe underweight prevalence was highest in south Asia over the entire analysis period, at 20·3% (95% CrI 15·3–25·8) in girls and 28·6% (22·3–35·0) in boys in 2016, having decreased from 23·0% (13·9–33·6) in girls and 37·8% (26·6–49·2) in boys in 1975. Prevalence of obesity was highest in Polynesia and Micronesia in both sexes, 25·4% (16·8–35·2) in girls and 22·4% (13·4–32·9) in boys, followed by the high-income English-speaking region.

Nationally, the prevalence of moderate and severe underweight was less than 1% among girls in 45 countries and among boys in 29 countries in 2016 (figure 3). Prevalence of moderate and severe underweight was high throughout south Asia, reaching 22·7% (95% CrI 16·7–29·6) among girls and 30·7% (23·5–38·0) among boys in India. Obesity prevalence was between 1% and 2% among girls in Cambodia, Burkina Faso, Vietnam, Ethiopia, India, Madagascar, Republic of the Congo, Japan, Nepal, Niger, and Chad. Obesity prevalence was less than 1% among boys in Uganda, Rwanda, Niger, Burkina Faso, Ethiopia, Guinea, Chad, and Senegal and between 1% and 2% in another 24 countries.

Conversely, obesity prevalence was more than 30% in girls in Nauru, the Cook Islands, and Palau and boys in the Cook Islands, Nauru, Palau, Niue, and American Samoa in 2016, and was also high, around or above 20%, in some countries in Polynesia and Micronesia, the Middle East and north Africa (eg, Egypt, Kuwait, Qatar, and Saudi Arabia), the Caribbean (Bermuda and Puerto Rico), and in the USA. In 1975, obesity prevalence was less than 10% in every country except Nauru and Bermuda, where it was still less than 20%. From 1975 to 2016, obesity prevalence increased in every country, although the increase was not statistically significant in some high-income countries.

The number of moderately and severely underweight girls and boys worldwide peaked around the year 2000, and subsequently decreased to 75 (95% CrI 44–117) million girls and 117 (70–178) million boys in 2016, slightly higher than in 1975 (figure 10). In most regions, the number of moderately and severely underweight children and adolescents decreased despite population growth. The exceptions were south Asia; southeast Asia; and central, east, and west Africa, where population growth led to an increase in the absolute underweight burden, despite declining prevalence. 47·5 million (63%) of 75 million moderately and severely underweight girls and 73·6 million (63%) of 117 million underweight boys in the world lived in south Asia in 2016, substantially higher than its 27% share of the child and adolescent population.
The number of girls with obesity increased from 5 (95% CrI 1–14) million in 1975 to 50 (24–89) million in 2016. The number of boys with obesity increased from 6 (1–19) million in 1975 to 74 (39–125) million in 2016. 73% of the increase in the number of children and adolescents with obesity was due to increase in prevalence of obesity, 3% due to population growth and changes in age structure of the child and adolescent population, and another 24% due to the interaction of the two (appendix).
The number of children and adolescents with obesity were east Asia, the Middle East and north Africa, south Asia, and the high-income English-speaking region. The worldwide number of adult women with obesity increased from 69 (57–83) million in 1975 to 390 (363–418) million in 2016; the number of men with obesity increased from 31 (24–39) million in 1975 to 281 (257–307) million in 2016. An additional 213 million children and adolescents and 1·30 billion adults were in the overweight range, but below the threshold for obesity.

Figure 9: Trends in age-standardised prevalence of BMI categories in male children and adolescents by region
Children and adolescents were aged 5–19 years. See appendix for results for adults. BMI=body-mass index.
Discussion

Mean BMI and prevalence of obesity increased worldwide in children and adolescents from 1975 to 2016, with the rate of change in mean BMI moderately correlated with that of adults until around 2000, but only weakly correlated afterwards. The trend in children’s and adolescents’ mean BMI has plateaued, albeit at high levels, in many high-income countries since around 2000, but has accelerated in east, south, and southeast Asia. Despite this rise, more children and adolescents worldwide are moderately or severely underweight than obese. However, if post-2000 trends continue, child and adolescent obesity is expected to surpass moderate and severe underweight by 2022.

Figure 10: Trends in the number of children and adolescents with obesity and with moderate and severe underweight by region

Children and adolescents were aged 5–19 years. See appendix for results for adults. BMI=body-mass index.

No prior global analyses of mean BMI and underweight have been done in children aged over 5 years and adolescents. For overweight and obesity, our results are not directly comparable with those of Ng and colleagues because the two studies covered different age ranges (2–19 years in Ng and colleagues’ study compared with 5–19 years in our study), used different classification systems for defining overweight and obesity (WHO in our study versus International Obesity Task Force [IOTF], by Ng and colleagues’), and differed in criteria for including data (only measured height and weight in our study versus measured and self-reported by Ng and colleagues’). Nonetheless, both studies concluded that the rise in excess weight in children and adolescents has plateaued in high-income countries but continues in low-income and middle-income countries. The plateau in children’s and adolescents’ overweight and obesity in
high-income countries and the relatively rapid transition from underweight to overweight and obesity in low-income and middle-income countries have also been noted in specific countries.

Our study is the first to make comparable estimates of mean BMI and the prevalence of a complete set of BMI categories with clinical and public health relevance—from underweight to obesity. We used an unprecedented amount of population-based data from almost all of the world’s countries, while maintaining a high standard of data quality and using only measured height and weight data to avoid the bias in self-reported data. Characteristics of data sources were verified through repeated checks by NCD-RisC members, and data that could be systematically different from the general population were excluded, eg, those from samples of students or of ever-married women in ages and countries with low school enrolment or marriage rates. Data were analysed according to a common protocol to obtain the required mean and prevalence by age and sex. Finally, we used a statistical model that used all available data while giving more weight to national data than subnational and community studies, and took into account the epidemiological features of outcomes such as BMI by using non-linear time trends and age associations, and differences between rural and urban populations.

Despite using the most comprehensive global database of human anthropometry to date, some countries and regions had fewer data sources, especially those in the Caribbean, Polynesia and Micronesia, Melanesia, and central Asia. The scarcity of data is reflected in wider uncertainty intervals of our estimates for these countries and regions. Of sources with data on children and adolescents, 39·9% had data for 5–9 years of age, 50·3% for 10–14 years, and 78·9% for 15–19 years. Many sources with data on children aged 5–9 years were school-based measurement studies in high-income countries where school enrolment is almost universal. The relative paucity of data on children aged 5–9 years restricted our capacity to compare trends in this age group with those of adolescents, despite some evidence from high-income countries that trends are somewhat different before and after 10 years of age. Finally, although the age-dependent cutoffs for defining overweight and obesity in children and adolescents reflect natural growth in these ages, they are based on BMI distributions in a reference population, and not explicitly selected to represent optimal BMI levels for health in prospective studies, as done for adults, or optimal nutritional status, as done for children younger than 5 years. The reference population used by WHO, and the cutoffs for defining overweight and obesity, differ from those used by IOTF and the US Centers for Disease Control and Prevention (CDC). Specifically, in the WHO classification, a BMI of 30 kg/m² at ages 18–19 years corresponds to 2 SD (ie, about the 97·5th percentile) from the median of the reference population in the IOTF classification, a BMI of 30 kg/m² at age 18 years corresponds to the 98·6th percentile for girls and the 98·9th percentile for boys. While at 18 years the two systems classify the same children as obese, at younger ages a smaller proportion are classified as obese according to the IOTF definition compared with the WHO definition. For this reason, comparisons of overweight and obesity prevalence based on the three definitions found that prevalence using the WHO classification was higher than those of IOTF and CDC, but that trends are similar.

The effectiveness of interventions for overweight and obesity in children and adolescents has been reviewed in several systematic reviews and modelling studies, but how they are selected for implementation and their post-implementation effects at the population level are rarely investigated. For this reason, there is no systematic information on the determinants of the divergent trends in BMI in children and adolescents and in adults, be it on food environments and behaviours or on policies that affect them. The plateauing of children’s and adolescents’ BMI in high-income countries as adult BMI continues to increase might be due to specific initiatives by governments, community groups, schools, and notable individuals that have increased public awareness about overweight and obesity in children, leading to changes in nutrition and activity that are sufficient to curb the rise in mean BMI.

A general feature of policies that target overweight and obesity in children and adolescents in high-income countries is a reluctance to use taxes and industry regulations to change eating and drinking behaviours. Some middle-income countries are also adopting policies to combat overweight and obesity in children and adolescents, in some cases with a stronger emphasis on regulation and taxes than in high-income countries. While momentum might be gathering to use taxes and regulations to reduce the consumption of energy-dense foods, few policies and programmes attempt to make healthy foods such as whole grains and fresh fruits and vegetables more affordable through targeted price subsidies, (conditional) cash transfers and food vouchers, or healthy school meals. Unaffordability of healthy food options not only leads to social inequalities in overweight and obesity, but might also limit the effect of policies that target unhealthy foods. Finally, efforts in population-based prevention of overweight and obesity in children and adolescents should be matched with enhancing access to health-care interventions for weight management and for reducing the adverse effects of obesity, including intensive behavioural therapy to change diet and exercise; screening for and management of hypertension, glucose intolerance, dyslipidaemia, and abnormal liver function in children and adolescents with obesity; and in extreme cases bariatric surgery.
Our finding that the number of children and adolescents aged 5–19 years in the world who are moderately or severely underweight remains larger than those who are obese shows the continued need for policies that enhance food security in low-income countries and households, especially in south Asia. Yet the experiences of east Asia and Latin America and the Caribbean show that the transition from underweight to overweight and obesity can be rapid, and overwhelm the national capacity needed to engender a healthy transition. More broadly, in an unhealthy nutritional transition, an increase in nutrient-poor, energy-dense foods can lead to stunted growth along with weight gain in children, adolescents, and adults, resulting in higher BMI and worse health outcomes throughout the life-course. Therefore, the findings from our comprehensive analysis of trends in underweight, as well as overweight and obesity highlight the disconnect between the global dialogue on overweight and obesity, which has largely overlooked the remaining undernutrition burden, and the initiatives and donors focusing on undernutrition that have paid little attention to the looming burden of overweight and obesity, itself a risk factor for adverse pregnancy outcomes. The Sustainable Development Goals, which address poverty, education, nutrition, and universal health coverage, provide an opportunity for integrating policies that coherently address underweight and overweight in children and adolescents, and their health consequences, effectively and equitably. Doing so would require commitment from national and international agencies and donors for replacing the fragmented focus with an integrated approach.

Contributors
ME designed the study and oversaw research. Members of the Country and Regional Data Group collected and reanalysed data, and checked pooled data for accuracy of information about their study and other studies in their country. MDC, VB, HB, and BZ led data collection. JB led the statistical analysis and prepared results. Members of the Pooled Analysis and Writing Group contributed to study design, collated data, checked all data sources in consultation with the Country and Regional Data Group, analysed pooled data, and prepared results. ME and JB wrote the first draft of the report with input from other members of the Pooled Analysis and Writing Group. Members of the Country and Regional Data Group commented on the draft report. The authors alone are responsible for the views expressed in this Article and they do not necessarily represent the views, decisions, or policies of the institutions with which they are affiliated.

Declaration of interests
ME reports a charitable grant from the AstraZeneca Young Health Programme, and personal fees from Prudential, Scor, and Third Bridge, outside the submitted work. All other authors declare no competing interests.

Acknowledgments
We thank WHO country and regional offices and World Heart Federation for support in data identification and access. We thank Tim Cole for valuable discussions on different classifications systems of underweight, overweight, and obesity. VB is supported by an Imperial College Junior Research Fellowship.

References
17 Popkin BM, Conde W, Hounou N, Monteiro C. Is there a lag globally in overweight trends for children compared with adults? Obesity (Silver Spring) 2006; 14: 1866–33.

48 Popkin BM. Relationship between shifts in food system dynamics and acceleration of the global nutrition transition. *Nutr Rev* 2017; 75: 73–82.

Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Appendix

Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults

NCD Risk Factor Collaboration (NCD-RisC)
NCD Risk Factor Collaboration (NCD-RisC)

Pooled Analysis and Writing (* joint first authors)

James Bentham (University of Kent, UK; Imperial College London, UK)*; Mariachiara Di Cesare (Middlesex University, UK)*; Ver Bilano (Imperial College London, UK)*; Honor Bixby (Imperial College London, UK)*; Bin Zhou (Imperial College London, UK)*; Gretchen A Stevens (World Health Organization, Switzerland); Leanne M Riley (World Health Organization, Switzerland); Cristina Taddei (Imperial College London, UK); Kaveh Hajifathalian (Cleveland Clinic, USA); Yuan Lu (Yale University, USA); Stefan Savin (World Health Organization, Switzerland); Melanie J Cowan (World Health Organization, Switzerland); Christopher J Paciorek (University of California, Berkeley, USA); Adela Chirita-Emandi (Victor Babeș University of Medicine and Pharmacy Timișoara, Romania); Alison J Hayes (University of Sydney, Australia); Joanne Katz (Johns Hopkins University, USA); Roya Kelishadi (Isfahan University of Medical Sciences, Iran); Andre Pascal Kengne (South African Medical Research Council, South Africa); Young-Ho Khang (Seoul National University, South Korea); Avula Laxmaiah (National Institute of Nutrition, India); Yanping Li (Harvard TH Chan School of Public Health, USA); Jun Ma (Peking University, China); J Jaime Miranda (Universidad Peruana Cayetano Heredia, Peru); Aya Mostafa (Ain Shams University, Egypt); Martin Neovius (Karolinska Institutet, Sweden); Cristina Padez (University of Coimbra, Portugal); Lekhraj Rampal (Universiti Putra Malaysia, Malaysia); Aubrianna Zhu (Imperial College London, UK); James E Bennett (Imperial College London, UK); Goodarz Danaei (Harvard TH Chan School of Public Health, USA); Zulfiqar A Bhutta (The Hospital for Sick Children, Canada; Aga Khan University, Pakistan); Majid Ezzati (Imperial College London, UK)
Country and Regional Data (* equal contribution; listed alphabetically)

Leandra Abarca-Gómez (Caja Costarricense de Seguro Social, Costa Rica)*; Ziad A Abdeen (Al-Quds University, Palestine)*; Zargar Abdul Hamid (Center for Diabetes and Endocrine Care, India)*; Niveen M Abu-Rmeileh (Birzeit University, Palestine)*; Benjamin Acosta-Cazares (Instituto Mexicano del Seguro Social, Mexico)*; Cecilia Acuin (International Rice Research Institute, Philippines)*; Robert J Adams (The University of Adelaide, Australia)*; Wichai Aekplakorn (Mahidol University, Thailand)*; Kaosar Afsana (BRAC, Bangladesh)*; Carlos A Aguilar-Salinas (Instituto Nacional de Ciencias Médicas y Nutricion, Mexico)*; Charles Agyemang (University of Amsterdam, The Netherlands)*; Alireza Ahmadvand (Non-Communicable Diseases Research Center, Iran)*; Wolfgang Ahrens (Leibniz Institute for Prevention Research and Epidemiology - BIPS, Germany)*; Kamel Ajlouni (National Center for Diabetes and Endocrinology, Jordan)*; Nazgul Akhtaeva (Kazakh National Medical University, Kazakhstan)*; Hazzaa M Al-Hazzaa (King Saud University, Saudi Arabia)*; Amani Rashed Al-Othman (Kuwait Institute for Scientific Research, Kuwait)*; Rajaa Al-Raddadi (Ministry of Health, Saudi Arabia)*; Fadia AlBuhairan (King Abdullah International Medical Research Center, Saudi Arabia)*; Shahla AlDhukair (King Abdullah International Medical Research Center, Saudi Arabia)*; Mohamed M Ali (World Health Organization, Switzerland)*; Osman Ali (Universiti Malaysia Sabah, Malaysia)*; Ala'a Alkerwi (Luxembourg Institute of Health, Luxembourg)*; Mar Alvarez-Pedrerol (ISGlobal Centre for Research in Environmental Epidemiology, Spain)*; Eman Aly (World Health Organization Regional Office for the Eastern Mediterranean, Egypt)*; Deepak N Amarapurkar (Bombay Hospital and Medical Research Centre, India)*; Philippe Amouyel (Lille University and Hospital, France)*; Antoinette Amuzu (London School of Hygiene & Tropical Medicine, UK)*; Lars Bo Andersen (Western Norway University of Applied Sciences, Norway)*; Sigmund A Anderssen (Norwegian School of Sport Sciences, Norway)*; Dolores S Andrade
(Universidad de Cuenca, Ecuador)*; Lars H Ångquist (Bispebjerg and Frederiksberg Hospitals, Denmark)*; Ranjit Mohan Anjana (Madras Diabetes Research Foundation, India)*; Hajer Aounallah-Skhiri (National Institute of Public Health, Tunisia)*; Joana Araújo (Universidade do Porto, Portugal)*; Inger Ariansen (Norwegian Institute of Public Health, Norway)*; Tahir Aris (Ministry of Health Malaysia, Malaysia)*; Nimmathota Arlappa (National Institute of Nutrition, India)*; Dominique Arveiler (University of Strasbourg and Strasbourg University Hospital, France)*; Krishna K Aryal (Nepal Health Research Council, Nepal)*; Thor Aspelund (University of Iceland, Iceland)*; Felix K Assah (University of Yaoundé 1, Cameroon)*; Maria Cecília F Assunção (Federal University of Pelotas, Brazil)*; May Soe Aung (University of Medicine 1, Myanmar)*; Mária Avdicová (Banska Bystrica Regional Authority of Public Health, Slovakia)*; Ana Azevedo (University of Porto Medical School, Portugal)*; Fereidoun Azizi (Shahid Beheshti University of Medical Sciences, Iran)*; Bontha V Babu (Indian Council of Medical Research, India)*; Suhad Bahijri (King Abdulaziz University, Saudi Arabia)*; Jennifer L Baker (Bispebjerg and Frederiksberg Hospital, Denmark)*; Nagalla Balakrishna (National Institute of Nutrition, India)*; Mohamed Bamosmoosh (University of Science and Technology, Yemen)*; Maciej Banach (Medical University of Lodz, Poland)*; Piotr Bandosz (Medical University of Gdansk, Poland)*; José R Banegas (Universidad Autónoma de Madrid, Spain)*; Carlo M Barbagallo (University of Palermo, Italy)*; Alberto Barceló (Pan American Health Organization, USA)*; Amina Barkat (Mohammed V University de Rabat, Morocco)*; Aluisio JD Barros (Federal University of Pelotas, Brazil)*; Mauro VG Barros (University of Pernambuco, Brazil)*; Iqbal Batal (Dalhousie University, Canada)*; Anwar M Batieha (Jordan University of Science and Technology, Jordan)*; Rosangela L Batista (Federal University of Maranhao, Brazil)*; Assembekov Batyrbek (Kazakh National Medical University, Kazakhstan)*; Louise A Baur (University of Sydney, Australia)*; Robert Beaglehole (University of Auckland, New Zealand)*; Habiba Ben Romdhane (University Tunis El Manar,
Tunisia)*; Judith Benedics (Federal Ministry of Health and Women’s Affairs, Austria)*; Mikhail Benet (CAFAM University Foundation, Colombia)*; James E Bennett (Imperial College London, UK)*; Antonio Bernabe-Ortiz (Universidad Peruana Cayetano Heredia, Peru)*; Gailute Bernotiene (Lithuanian University of Health Sciences, Lithuania)*; Heloisa Bettiol (University of São Paulo, Brazil)*; Aroor Bhagyalaxmi (B J Medical College, India)*; Sumit Bharadwaj (Chirayu Medical College, India)*; Santosh K Bhargava (Sunder Lal Jain Hospital, India)*; Zaid Bhatti (Aga Khan University, Pakistan)*; Zulfiqar A Bhutta (The Hospital for Sick Children, Canada; Aga Khan University, Pakistan)*; Hongsheng Bi (Shandong University of Traditional Chinese Medicine, China)*; Yufang Bi (Shanghai Jiao-Tong University School of Medicine, China)*; Anna Biehl (Norwegian Institute of Public Health, Norway)*; Mukharram Bikbov (Ufa Eye Research Institute, Russia)*; Bihungum Bista (Nepal Health Research Council, Nepal)*; Dusko J Bjelica (University of Montenegro, Montenegro)*; Peter Bjerregaard (University of Southern Denmark, Denmark; University of Greenland, Greenland)*; Espen Bjertness (University of Oslo, Norway)*; Marius B Bjertness (University of Oslo, Norway)*; Cecilia Björkelund (University of Gothenburg, Sweden)*; Anneke Blokstra (National Institute for Public Health and the Environment, The Netherlands)*; Simona Bo (University of Turin, Italy)*; Martin Bobak (University College London, UK)*; Lynne M Boddy (Liverpool John Moores University, UK)*; Bernhard O Boehm (Nanyang Technological University, Singapore)*; Heiner Boeing (German Institute of Human Nutrition, Germany)*; Jose G Boggia (Universidad de la República, Uruguay)*; Carlos P Boissonnet (CEMIC, Argentina)*; Marialaura Bonaccio (IRCCS Istituto Neurologico Mediterraneo Neuromed, Italy)*; Vanina Bongard (Toulouse University School of Medicine, France)*; Pascal Bovet (Ministry of Health, Seychelles; University of Lausanne, Switzerland)*; Lien Braeckevelt (Flemish Agency for Care and Health, Belgium)*; Lutgart Braeckman (Ghent University, Belgium)*; Marjolijn CE Bragt (FrieslandCampina, The
Sinica, Taiwan)*; Fangfang Chen (Capital Institute of Pediatrics, China)*; Huashuai Chen (Duke University, USA)*; Shuohua Chen (Kailuan General Hospital, China)*; Zhengming Chen (University of Oxford, UK)*; Ching-Yu Cheng (Duke-NUS Medical School, Singapore)*; Angela Chetrit (The Gertner Institute for Epidemiology and Health Policy Research, Israel)*; Ekaterina Chikova-Iscener (National Centre of Public Health and Analyses, Bulgaria)*; Arnaud Chiolero (University of Bern, Switzerland)*; Shu-Ti Chiou (Ministry of Health and Welfare, Taiwan)*; Adela Chirita-Emandi (Victor Babeş University of Medicine and Pharmacy Timisoara, Romania)*; María-Dolores Chirlaque (Murcia Regional Health Council, Spain)*; Belong Cho (Seoul National University College of Medicine, South Korea)*; Yumi Cho (Korea Centers for Disease Control and Prevention, South Korea)*; Kaare Christensen (University of Southern Denmark, Denmark)*; Diego G Christofaro (Universidade Estadual Paulista, Brazil)*; Jerzy Chudek (Medical University of Silesia, Poland)*; Renata Cifkova (Charles University in Prague, Czech Republic)*; Eliza Cinteza (Carol Davila University of Medicine and Pharmacy, Romania)*; Frank Claessens (Katholieke Universiteit Leuven, Belgium)*; Els Clays (Ghent University, Belgium)*; Hans Concin (Agency for Preventive and Social Medicine, Austria)*; Susana C Confortin (Universidade Federal de Santa Catarina, Brazil)*; Cyrus Cooper (University of Southampton, UK)*; Rachel Cooper (University College London, UK)*; Tara C Coppinger (Cork Institute of Technology, Ireland)*; Simona Costanzo (IRCCS Istituto Neurologico Mediterraneo Neuromed, Italy)*; Dominique Cottel (Institut Pasteur de Lille, France)*; Chris Cowell (University of Sydney, Australia)*; Cora L Craig (Canadian Fitness and Lifestyle Research Institute, Canada)*; Ana B Crujeiras (CIBEROBN, Spain)*; Alexandra Cucu (National Institute of Public Health, Romania)*; Graziella D'Arrigo (National Council of Research, Italy)*; Eleonora d'Orsi (Universidade Federal de Santa Catarina, Brazil)*; Jean Dallongeville (Institut Pasteur de Lille, France)*; Albertino Damasceno (Eduardo Mondlane University, Mozambique)*; Camilla T
Damsgaard (University of Copenhagen, Denmark)*; Goodarz Danaei (Harvard TH Chan School of Public Health, USA)*; Rachel Dankner (The Gertner Institute for Epidemiology and Health Policy Research, Israel)*; Thomas M Dantoft (Research Centre for Prevention and Health, Denmark)*; Saeed Dastgiri (Tabriz Health Services Managemnet Centre, Iran)*; Luc Dauchet (Lille University Hospital, France)*; Kairat Davletov (Kazakh National Medical University, Kazakhstan)*; Guy De Backer (Ghent University, Belgium)*; Dirk De Bacquer (Ghent University, Belgium)*; Amalia De Curtis (IRCCS Istituto Neurologico Mediterraneo Neuromed, Italy)*; Giovanni de Gaetano (IRCCS Istituto Neurologico Mediterraneo Neuromed, Italy)*; Stefaan De Henauw (Ghent University, Belgium)*; Paula Duarte de Oliveira (Federal University of Pelotas, Brazil)*; Karin De Ridder (Scientific Institute of Public Health, Belgium)*; Delphine De Smedt (Ghent University, Belgium)*; Mohan Deepa (Madras Diabetes Research Foundation, India)*; Alexander D Deev (National Research Centre for Preventive Medicine, Russia)*; Abbas Dehghan (Erasmus Medical Center Rotterdam, The Netherlands)*; Hélène Delisle (University of Montreal, Canada)*; Francis Delpeuch (Institut de Recherche pour le Développement, France)*; Valérie Deschamps (French Public Health Agency, France)*; Klodian Dhana (Erasmus Medical Center Rotterdam, The Netherlands)*; Augusto F Di Castelnuovo (IRCCS Istituto Neurologico Mediterraneo Neuromed, Italy)*; Juvenal Soares Dias-da-Costa (Universidade do Vale do Rio dos Sinos, Brazil)*; Alejandro Diaz (National Council of Scientific and Technical Research, Argentina)*; Zivka Dika (University of Zagreb, Croatia)*; Shirin Djalalinia (Tehran University of Medical Sciences, Iran)*; Ha TP Do (National Institute of Nutrition, Vietnam)*; Annette J Dobson (University of Queensland, Australia)*; Maria Benedetta Donati (IRCCS Istituto Neurologico Mediterraneo Neuromed, Italy)*; Chiara Donfrancesco (Istituto Superiore di Sanità, Italy)*; Silvana P Donoso (Universidad de Cuenca, Ecuador)*; Angela Döring (Helmholtz Zentrum München, Germany)*; Maria Dorobantu (Carol Davila University of Medicine and Pharmacy,
Romania)*; Ahmad Reza Dorosty (Tehran University of Medical Sciences, Iran)*; Kouamelan Doua (Ministère de la Santé et de la Lutte Contre le Sida, Côte d’Ivoire)*; Wojciech Drygas (The Cardinal Wyszynski Institute of Cardiology, Poland)*; Jia Li Duan (Beijing Center for Disease Prevention and Control, China)*; Charmaine Duante (Food and Nutrition Research Institute, Philippines)*; Vesselka Duleva (National Centre of Public Health and Analyses, Bulgaria)*; Virginija Dulskiene (Lithuanian University of Health Sciences, Lithuania)*; Vilnis Dzerve (University of Latvia, Latvia)*; Elzbieta Dziankowska-Zaborszczyk (Medical University of Lodz, Poland)*; Eruke E Egbagbe (University of Benin, Nigeria)*; Robert Eggertsen (University of Gothenburg, Sweden)*; Gabriele Eiben (University of Skövde, Sweden)*; Ulf Ekelund (Norwegian School of Sport Sciences, Norway)*; Jalila El Ati (National Institute of Nutrition and Food Technology, Tunisia)*; Paul Elliott (Imperial College London, UK)*; Reina Engle-Stone (University of California Davis, USA)*; Rajiv T Erasmus (University of Stellenbosch, South Africa)*; Cihangir Erem (Karadeniz Technical University, Turkey)*; Louise Eriksen (University of Southern Denmark, Denmark)*; Johan G Eriksson (National Institute for Health and Welfare, Finland)*; Jorge Escobedo-de la Peña (Instituto Mexicano del Seguro Social, Mexico)*; Alun Evans (The Queen's University of Belfast, UK)*; David Faeh (University of Zurich, Switzerland)*; Caroline H Fall (University of Southampton, UK)*; Victoria Farrugia Sant'Angelo (Primary Health Care, Malta)*; Farshad Farzadfar (Tehran University of Medical Sciences, Iran)*; Francisco J Felix-Redondo (Centro de Salud Villanueva Norte, Spain)*; Trevor S Ferguson (The University of the West Indies, Jamaica)*; Romulo A Fernandes (Universidade Estadual Paulista, Brazil)*; Daniel Fernández-Bergés (Hospital Don Benito-Villanueva de la Serena, Spain)*; Daniel Ferrante (Ministry of Health, Argentina)*; Marika Ferrari (Council for Agricultural Research and Economics, Italy)*; Catterina Ferreccio (Pontificia Universidad Católica de Chile, Chile)*; Jean Ferrières (Toulouse University School of Medicine, France)*; Joseph D Finn (University of Manchester,
UK)*; Krista Fischer (University of Tartu, Estonia)*; Eric Monterubio Flores (Instituto Nacional de Salud Pública, Mexico)*; Bernhard Föger (Agency for Preventive and Social Medicine, Austria)*; Leng Huat Foo (Universiti Sains Malaysia, Malaysia)*; Ann-Sofie Forsslund (Umeå University, Sweden)*; Maria Forsner (Dalarna University, Sweden)*; Heba M Fouad (World Health Organization Regional Office for the Eastern Mediterranean, Egypt)*; Damian K Francis (The University of the West Indies, Jamaica)*; Maria do Carmo Franco (Federal University of São Paulo, Brazil)*; Oscar H Franco (Erasmus Medical Center Rotterdam, The Netherlands)*; Guillermo Frontera (Hospital Universitario Son Espases, Spain)*; Flavio D Fuchs (Hospital de Clínicas de Porto Alegre, Brazil)*; Sandra C Fuchs (Universidade Federal do Rio Grande do Sul, Brazil)*; Yuki Fujita (Kindai University, Japan)*; Takuro Furusawa (Kyoto University, Japan)*; Zbigniew Gaciong (Medical University of Warsaw, Poland)*; Mihai Gafencu (Victor Babeș University of Medicine and Pharmacy Timisoara, Romania)*; Daniela Galeone (Ministry of Health, Italy)*; Fabio Galvano (University of Catania, Italy)*; Manoli Garcia-de-la-Hera (CIBER en Epidemiología y Salud Pública, Spain)*; Dickman Gareta (University of KwaZulu-Natal, South Africa)*; Sarah P Garnett (University of Sydney, Australia)*; Jean-Michel Gaspoz (Geneva University Hospitals, Switzerland)*; Magda Gasull (CIBER en Epidemiología y Salud Pública, Spain)*; Louise Gates (Australian Bureau of Statistics, Australia)*; Harald Geiger (Agency for Preventive and Social Medicine, Austria)*; Johanna M Geleijnse (Wageningen University, The Netherlands)*; Anoosheh Ghasemian (Non-Communicable Diseases Research Center, Iran)*; Simona Giampaoli (Istituto Superiore di Sanità, Italy)*; Francesco Gianfagna (University of Insubria, Italy; IRCCS Istituto Neurologico Mediterraneo Neuromed, Italy)*; Tiffany K Gill (The University of Adelaide, Australia)*; Jonathan Giovannelli (Lille University Hospital, France)*; Aleksander Giwerccman (Lund University, Sweden)*; Justyna Godos (University of Catania, Italy)*; Sibel Gogen (Ministry of Health, Turkey)*; Rebecca A Goldsmith (Ministry
of Health, Israel); David Goltzman (McGill University, Canada); Helen Gonçalves (Federal University of Pelotas, Brazil); Margot González-Leon (Instituto Mexicano del Seguro Social, Mexico); Juan P González-Rivas (The Andes Clinic of Cardio-Metabolic Studies, Venezuela); Marcela Gonzalez-Gross (Universidad Politécnica de Madrid, Spain); Frederic Gotttrand (Université de Lille 2, France); Antonio Pedro Graça (Ministry of Health, Portugal); Sidsel Graff-Iversen (Norwegian Institute of Public Health, Norway); Dušan Grafnetter (Institute for Clinical and Experimental Medicine, Czech Republic); Aneta Grajda (The Children's Memorial Health Institute, Poland); Maria G Grammatikopoulou (Alexander Technological Educational Institute, Greece); Ronald D Gregor (Dalhousie University, Canada); Tomasz Grodzicki (Jagiellonian University Medical College, Poland); Anders Grøntved (University of Southern Denmark, Denmark); Giuseppe Grosso (Azienda Ospedaliera Universitaria Policlinico Vittorio Emanuele, Italy); Gabriella Gruden (University of Turin, Italy); Vera Grujic (University of Novi Sad, Serbia); Dongfeng Gu (National Center of Cardiovascular Diseases, China); Emanuela Gualdi-Russo (University of Ferrara, Italy); Pilar Guallar-Castillón (Universidad Autónoma de Madrid, Spain); Ong Peng Guan (Singapore Eye Research Institute, Singapore); Elias F Gudmundsson (Icelandic Heart Association, Iceland); Vilmundur Gudnason (University of Iceland, Iceland); Ramiro Guerrero (Universidad Icesi, Colombia); Idris Guessous (Geneva University Hospitals, Switzerland); Andre L Guimarães (State University of Montes Claros, Brazil); Martin C Gulliford (King's College London, UK); Johanna Gunnlaugsdottir (Icelandic Heart Association, Iceland); Marc Gunter (International Agency for Research on Cancer, France); Xiuhua Guo (Capital Medical University, China); Yin Guo (Capital Medical University, China); Prakash C Gupta (Healis-Sekhsaria Institute for Public Health, India); Rajeev Gupta (Eternal Heart Care Centre & Research Institute, India); Oye Gureje (University of Ibadan, Nigeria); Beata Gurzkowska (The Children's Memorial Health Institute, Poland); Laura
María Huerta (CIBER en Epidemiología y Salud Pública, Spain)*; Constanta Huidumac Petrescu (National Institute of Public Health, Romania)*; Martijn Huisman (VU University Medical Center and VU University, The Netherlands)*; Abdullatif Husseini (Birzeit University, Palestine)*; Chinh Nguyen Huu (National Institute of Nutrition, Vietnam)*; Inge Huybrechts (International Agency for Research on Cancer, France)*; Nahla Hwalla (American University of Beirut, Lebanon)*; Jolanda Hyska (Institute of Public Health, Albania)*; Licia Iacoviello (IRCCS Istituto Neurologico Mediterraneo Neuromed, Italy; University of Insubria, Italy)*; Anna G Iannone (Cardiologia di Mercato S. Severino, Italy)*; Jesús M Ibarluzea (CIBER en Epidemiología y Salud Pública, Spain)*; Mohsen M Ibrahim (Cairo University, Egypt)*; Nayu Ikeda (National Institute of Health and Nutrition, Japan)*; M Arfan Ikram (Erasmus Medical Center Rotterdam, The Netherlands)*; Vilma E Irazola (Institute for Clinical Effectiveness and Health Policy, Argentina)*; Muhammad Islam (Aga Khan University, Pakistan)*; Aziz al-Safi Ismail (Universiti Sains Malaysia, Malaysia)*; Vanja Ivkovic (UHC Zagreb, Croatia)*; Masanori Iwasaki (Niigata University, Japan)*; Rod T Jackson (University of Auckland, New Zealand)*; Jeremy M Jacobs (Hadassah University Medical Center, Israel)*; Hashem Jaddou (Jordan University of Science and Technology, Jordan)*; Tazeen Jafar (Duke-NUS Medical School, Singapore)*; Kazi M Jamil (Kuwait Institute for Scientific Research, Kuwait)*; Konrad Jamrozik (University of Adelaide, Australia; deceased)*; Imre Janszky (Norwegian University of Science and Technology, Norway)*; Juel Jarani (Sports University of Tirana, Albania)*; Grazyna Jasienska (Jagiellonian University Medical College, Poland)*; Ana Jelaković (UHC Zagreb, Croatia)*; Bojan Jelaković (University of Zagreb School of Medicine, Croatia)*; Garry Jennings (Heart Foundation, Australia)*; Seung-Lyeal Jeong (National Health Insurance Service, South Korea)*; Chao Qiang Jiang (Guangzhou 12th Hospital, China)*; Santa Magaly Jiménez-Acosta (National Institute of Hygiene, Epidemiology and Microbiology, Cuba)*; Michel Joffres (Simon Fraser University, Canada)*;
Mattias Johansson (International Agency for Research on Cancer, France)*; Jost B Jonas (Ruprecht-Karls-University of Heidelberg, Germany)*; Torben Jørgensen (Research Centre for Prevention and Health, Denmark)*; Pradeep Joshi (World Health Organization Country Office, India)*; Dragana P Jovic (Institute of Public Health of Serbia, Serbia)*; Jacek Jóźwiak (Czestochowa University of Technology, Poland)*; Anne Juolevi (National Institute for Health and Welfare, Finland)*; Gregor Jurak (University of Ljubljana, Slovenia)*; Vesna Jureša (University of Zagreb, Croatia)*; Rudolf Kaaks (German Cancer Research Center, Germany)*; Anthony Kafatos (University of Crete, Greece)*; Eero O Kajantie (National Institute for Health and Welfare, Finland)*; Ofra Kalter-Leibovici (The Gertner Institute for Epidemiology and Health Policy Research, Israel)*; Nor Azmi Kamaruddin (Universiti Kebangsaan Malaysia, Malaysia)*; Efthymios Kapantais (Hellenic Medical Association for Obesity, Greece)*; Khem B Karki (Nepal Health Research Council, Nepal)*; Amir Kasaeian (Tehran University of Medical Sciences, Iran)*; Joanne Katz (Johns Hopkins Bloomberg School of Public Health, USA)*; Jussi Kauhanen (University of Eastern Finland, Finland)*; Prabhdeep Kaur (National Institute of Epidemiology, India)*; Maryam Kavousi (Erasmus Medical Center Rotterdam, The Netherlands)*; Gyulli Kazakbaeva (Ufa Eye Research Institute, Russia)*; Ulrich Keil (University of Münster, Germany)*; Lital Keinan Boker (Israel Center for Disease Control, Israel)*; Sirkka Keinänen-Kiukaanniemi (Oulu University Hospital, Finland)*; Roya Kelishadi (Isfahan University of Medical Sciences, Iran)*; Cecily Kelleher (University College Dublin, Ireland)*; Han CG Kemper (VU University Medical Center, The Netherlands)*; Andre P Kengne (South African Medical Research Council, South Africa)*; Alina Kerimkulova (Kyrgyz State Medical Academy, Kyrgyzstan)*; Mathilde Kersting (Research Institute of Child Nutrition, Germany)*; Timothy Key (University of Oxford, UK)*; Yousef Saleh Khader (Jordan University of Science and Technology, Jordan)*; Davood Khalili (Shahid Beheshti University of Medical Sciences, Iran)*; Young-Ho Khang (Seoul National University, South
Institute, Poland)*; Jing Liu (Capital Medical University Beijing An Zhen Hospital, China)*; Helle-Mai Loit (National Institute for Health Development, Estonia)*; Luis Lopes (University of Porto, Portugal)*; Roberto Lorbeer (University Medicine Greifswald, Germany)*; Paulo A Lotufo (University of São Paulo, Brazil)*; José Eugenio Lozano (Consejería de Sanidad Junta de Castilla y León, Spain)*; Dalia Luksiene (Lithuanian University of Health Sciences, Lithuania)*; Annamari Lundqvist (National Institute for Health and Welfare, Finland)*; Nuno Lunet (Universidade do Porto, Portugal)*; Per Lytsy (University of Uppsala, Sweden)*; Guansheng Ma (Peking University, China)*; Jun Ma (Peking University, China)*; George LL Machado-Coelho (Universidade Federal de Ouro Preto, Brazil)*; Aristides M Machado-Rodrigues (University of Coimbra, Portugal)*; Suka Machi (The Jikei University School of Medicine, Japan)*; Stefania Maggi (National Research Council, Italy)*; Dianna J Magliano (Baker Heart and Diabetes Institute, Australia)*; Emmanuella Magriplis (Agricultural University of Athens, Greece)*; Alagappan Mahaletchumy (Universiti Putra Malaysia, Malaysia)*; Bernard Maire (Institut de Recherche pour le Développement, France)*; Marjeta Majer (University of Zagreb, Croatia)*; Marcia Makdisse (Hospital Israelita Albert Einstein, Brazil)*; Reza Malekzadeh (Shiraz University of Medical Sciences, Iran)*; Rahul Malhotra (Duke-NUS Medical School, Singapore)*; Kodavanti Mallikharjuna Rao (National Institute of Nutrition, India)*; Sofia Malyutina (Institute of Internal and Preventive Medicine, Russia)*; Yannis Manios (Harokopio University, Greece)*; Jim I Mann (University of Otago, New Zealand)*; Enzo Manzato (University of Padova, Italy)*; Paula Margozzini (Pontificia Universidad Católica de Chile, Chile)*; Anastasia Markaki (Technological Educational Institute of Crete, Greece)*; Oonagh Markey (Loughborough University, UK)*; Larissa P Marques (Universidade Federal de Santa Catarina, Brazil)*; Pedro Marques-Vidal (Lausanne University Hospital, Switzerland)*; Jaume Marrugat (Institut Hospital del Mar d'Investigacions Mèdiques, Spain)*; Yves Martin-Prevel (Institut de Recherche pour le
Développement, France)*; Rosemarie Martin (Mary Immaculate College, Ireland)*; Reynaldo Martorell (Emory University, USA)*; Eva Martos (Hungarian Society of Sports Medicine, Hungary)*; Stefano Marventano (University of Catania, Italy)*; Shariq R Masoodi (Sher-i-Kashmir Institute of Medical Sciences, India)*; Ellis B Mathiesen (UiT The Arctic University of Norway, Norway)*; Alicia Matijasevich (University of São Paulo, Brazil)*; Tandi E Matsha (Cape Peninsula University of Technology, South Africa)*; Artur Mazur (University of Rzeszow, Poland)*; Jean Claude N Mbanya (University of Yaoundé 1, Cameroon)*; Shelly R McFarlane (The University of the West Indies, Jamaica)*; Stephen T McGarvey (Brown University, USA)*; Martin McKee (London School of Hygiene & Tropical Medicine, UK)*; Stela McLachlan (University of Edinburgh, UK)*; Rachael M McLean (University of Otago, New Zealand)*; Scott B McLean (Statistics Canada, Canada)*; Breige A McNulty (University College Dublin, Ireland)*; Safiah Md Yusof (International Medical University)*; Sounnia Mediene-Benchekor (University of Oran 1, Algeria)*; Jurate Medzioniene (Lithuanian University of Health Sciences, Lithuania)*; Aline Meirhaeghe (Institut National de la Santé et de la Recherche Médicale, France)*; Jørgen Meisfjord (Norwegian Institute of Public Health, Norway)*; Christa Meisinger (Helmholtz Zentrum München, Germany)*; Ana Maria B Menezes (Federal University of Pelotas, Brazil)*; Geetha R Menon (Indian Council of Medical Research, India)*; Gert BM Mensink (Robert Koch Institute, Germany)*; Indrapal I Meshram (National Institute of Nutrition, India)*; Andres Metspalu (University of Tartu, Estonia)*; Haakon E Meyer (University of Oslo, Norway)*; Jie Mi (Capital Institute of Pediatrics, China)*; Kim F Michaelsen (University of Copenhagen, Denmark)*; Nathalie Michels (Ghent University, Belgium)*; Kairit Mikkel (University of Tartu, Estonia)*; Jody C Miller (University of Otago, New Zealand)*; Cláudia S Minderico (Lusófona University, Portugal)*; Juan Francisco Miquel (Pontificia Universidad Católica de Chile, Chile)*; J Jaime Miranda (Universidad Peruana Cayetano Heredia, Peru)*; Daphne
Mirkopoulou (Democritus University, Greece)*; Erkin Mirrakhimov (Kyrgyz State Medical Academy, Kyrgyzstan)*; Marjeta Mišigoj-Durakovic (University of Zagreb, Croatia)*; Antonio Mistretta (University of Catania, Italy)*; Veronica Mocanu (Grigore T Popa University of Medicine and Pharmacy, Romania)*; Pietro A Modesti (Università degli Studi di Firenze, Italy)*; Mostafa K Mohamed (Ain Shams University, Egypt)*; Kazem Mohammad (Tehran University of Medical Sciences, Iran)*; Noushin Mohammadi-Fard (Hypertension Research Center, Iran)*; Viswanathan Mohan (Madras Diabetes Research Foundation, India)*; Salim Mohanna (Universidad Peruana Cayetano Heredia, Peru)*; Muhammad Fadhli Mohd Yusoff (Ministry of Health Malaysia, Malaysia)*; Drude Molbo (University of Copenhagen, Denmark)*; Line T Møllehave (Research Centre for Prevention and Health, Denmark)*; Niels C Møller (University of Southern Denmark, Denmark)*; Dénes Molnár (University of Pécs, Hungary)*; Amirabbas Momenan (Shahid Beheshti University of Medical Sciences, Iran)*; Charles K Mondo (Mulago Hospital, Uganda)*; Eric A Monterrubio (Instituto Nacional de Salud Pública, Mexico)*; Kotsedi Daniel K Monyeki (University of Limpopo, South Africa)*; Jin Soo Moon (Seoul National University Children's Hospital, South Korea)*; Leila B Moreira (Universidade Federal do Rio Grande do Sul, Brazil)*; Alain Morejon (University Medical Science, Cuba)*; Luis A Moreno (Universidad de Zaragoza, Spain)*; Karen Morgan (RCSI Dublin, Ireland)*; Erik Lykke Mortensen (University of Copenhagen, Denmark)*; George Moschonis (Harokopio University, Greece)*; Malgorzata Mossakowska (International Institute of Molecular and Cell Biology, Poland)*; Aya Mostafa (Ain Shams University, Egypt)*; Jorge Mota (University of Porto, Portugal)*; Anabela Mota-Pinto (University of Coimbra, Portugal)*; Mohammad Esmaeel Motlagh (Ahvaz Jundishapur University of Medical Sciences, Iran)*; Jorge Motta (Gorgas Memorial Institute of Public Health, Panama)*; Thet Thet Mu (Department of Public Health, Myanmar)*; Magdalena Muc (University of Coimbra, Portugal)*; Maria Lorenza Muiesan (University of Brescia, Italy)*; Martina Müller-
Sao Paulo Clinics Hospital, Brazil)*; Rute Santos (University of Porto, Portugal)*; Jouko L
Saramies (South Karelia Social and Health Care District, Finland)*; Luis B Sardinha
(Universidade de Lisboa, Portugal)*; Nizal Sarrafzadegan (Isfahan Cardiovascular Research
Center, Iran)*; Kai-Uwe Saum (German Cancer Research Center, Germany)*; Savvas Savva
(Research and Education Institute of Child Health, Cyprus)*; Mathilde Savy (Institut de
Recherche pour le Développement, France)*; Marcia Scauzufca (University of Sao Paulo
Clinics Hospital, Brazil)*; Angelika Schaffrath Rosario (Robert Koch Institute, Germany)*;
Herman Schargrodsky (Hospital Italiano de Buenos Aires, Argentina)*; Anja Schienkiewitz
(Robert Koch Institute, Germany)*; Sabine Schipf (University Medicine of Greifswald,
Germany)*; Carsten O Schmidt (University Medicine of Greifswald, Germany)*; Ida Maria
Schmidt (Rigshospitalet, Denmark)*; Constance Schultsz (Academic Medical Center of
University of Amsterdam, The Netherlands)*; Aletta E Schutte (South African Medical
Research Council, South Africa; North-West University, South Africa)*; Aye Aye Sein
(Ministry of Health, Myanmar)*; Abhijit Sen (Norwegian University of Science and
Technology, Norway)*; Idowu O Senbanjo (Lagos State University College of Medicine,
Nigeria)*; Sadaf G Sepanlou (Tehran University of Medical Sciences, Iran)*; Luis Serra-
Majem (University of Las Palmas de Gran Canaria, Spain)*; Svetlana A Shalnova (National
Research Centre for Preventive Medicine, Russia)*; Sanjib K Sharma (B P Koirala Institute of
Health Sciences, Nepal)*; Jonathan E Shaw (Baker Heart and Diabetes Institute, Australia)*;
Kenji Shibuya (The University of Tokyo, Japan)*; Dong Wook Shin (Samsung Medical
Center, South Korea)*; Youchan Shin (Singapore Eye Research Institute, Singapore)*;
Rahman Shiri (Finnish Institute of Occupational Health, Finland)*; Alfonso Siani (Institute of
Food Sciences of the National Research Council, Italy)*; Rosalynn Siantar (Singapore Eye
Research Institute, Singapore)*; Abla M Sibai (American University of Beirut, Lebanon)*;
Antonio M Silva (Federal University of Maranhao, Brazil)*; Diego Augusto Santos Silva
(Federal University of Santa Catarina, Brazil)*; Mary Simon (India Diabetes Research Foundation, India)*; Judith Simons (St Vincent's Hospital, Australia)*; Leon A Simons (University of New South Wales, Australia)*; Agneta Sjöberg (University of Gothenburg, Sweden)*; Michael Sjöström (Karolinska Institutet, Sweden)*; Sine Skovbjerg (Research Centre for Prevention and Health, Denmark)*; Jolanta Slowikowska-Hilczer (Medical University of Lodz, Poland)*; Przemyslaw Slusarczyk (International Institute of Molecular and Cell Biology, Poland)*; Liam Smeeth (London School of Hygiene & Tropical Medicine, UK)*; Margaret C Smith (University of Oxford, UK)*; Marieke B Snijder (Academic Medical Center Amsterdam, The Netherlands)*; Hung-Kwan So (The Chinese University of Hong Kong, China)*; Eugène Sobngwi (University of Yaoundé 1, Cameroon)*; Stefan Söderberg (Umeå University, Sweden)*; Moesijanti YE Soekatri (Health Polytechnic Jakarta II Institute, Indonesia)*; Vincenzo Solfrizzi (University of Bari, Italy)*; Emily Sonestedt (Lund University, Sweden)*; Yi Song (Peking University, China)*; Thorkild IA Sørensen (University of Copenhagen, Denmark)*; Maroje Soric (University of Zagreb, Croatia)*; Charles Sossa Jérome (Institut Régional de Santé Publique, Benin)*; Aicha Soumare (University of Bordeaux, France)*; Angela Spinelli (Istituto Superiore di Sanità, Italy)*; Igor Spiroski (Institute of Public Health of Republic of Macedonia, Macedonia (TFYR))*; Jan A Staessen (University of Leuven, Belgium)*; Hanspeter Stamm (Lamprecht und Stamm Sozialforschung und Beratung AG, Switzerland)*; Gregor Starc (University of Ljubljana, Slovenia)*; Maria G Stathopoulou (INSERM, France)*; Kaspar Staub (University of Zurich, Switzerland)*; Bill Stavreski (Heart Foundation, Australia)*; Jostein Steene-Johannessen (Norwegian School of Sport Sciences, Norway)*; Peter Stehle (Bonn University, Germany)*; Aryeh D Stein (Emory University, USA)*; George S Stergiou (Sotiria Hospital, Greece)*; Jochanan Stessman (Hadassah University Medical Center, Israel)*; Jutta Stieber (Helmholtz Zentrum München, Germany; deceased)*; Doris Stöckl (Helmholtz Zentrum München, Germany)*; Tanja Stocks
(Lund University, Sweden)*; Jakub Stokwizewski (National Institute of Public Health-
National Institute of Hygiene, Poland)*; Gareth Stratton (Swansea University, UK)*; Karien
Stronks (University of Amsterdam, The Netherlands)*; Maria Wany Strufaldi (Federal
University of São Paulo, Brazil)*; Ramón Suárez-Medina (National Institute of Hygiene,
Epidemiology and Microbiology, Cuba)*; Chien-An Sun (Fu Jen Catholic University,
Taiwan)*; Johan Sundström (Uppsala University, Sweden)*; Yn-Tz Sung (The Chinese
University of Hong Kong, China)*; Jordi Sunyer (ISGlobal Centre for Research in
Environmental Epidemiology, Spain)*; Paibul Suriyawongpaisal (Mahidol University,
Thailand)*; Boyd A Swinburn (The University of Auckland, New Zealand)*; Rody G Sy
(University of the Philippines, Philippines)*; Lucjan Szponar (National Food and Nutrition
Institute, Poland)*; E Shyong Tai (National University of Singapore, Singapore)*; Mari-Liis
Tammesoo (University of Tartu, Estonia)*; Abdonas Tamosiunas (Lithuanian University of
Health Sciences, Lithuania)*; Eng Joo Tan (University of Sydney, Australia)*; Xun Tang
(Peking University, China)*; Frank Tanser (University of KwaZulu-Natal, South Africa)*;
Yong Tao (Peking University, China)*; Mohammed Rasoul Tarawneh (Ministry of Health,
Jordan)*; Jakob Tarp (University of Southern Denmark, Denmark)*; Carolina B Tarqui-
Mamani (National Institute of Health, Peru)*; Oana-Florentina Tautu (Carol Davila University
of Medicine and Pharmacy, Romania)*; Radka Taxová Braunerová (Institute of
Endocrinology, Czech Republic)*; Anne Taylor (The University of Adelaide, Australia)*;
Félicité Tchibindat (UNICEF, Cameroon)*; Holger Theobald (Karolinska Institutet,
Sweden)*; Xenophon Theodoridis (Alexander Technological Educational Institute, Greece)*;
Lutgarde Thijs (University of Leuven, Belgium)*; Betina H Thuesen (Research Centre for
Prevention and Health, Denmark)*; Anne Tjonneland (Danish Cancer Society Research
Centre, Denmark)*; Hanna K Tolonen (National Institute for Health and Welfare, Finland)*;
Janne S Tolstrup (University of Southern Denmark, Denmark)*; Murat Topbas (Karadeniz
Medical University, China)*; Ying-Wei Wang (Ministry of Health and Welfare, Taiwan)*; S Goya Wannamethee (University College London, UK)*; Nicholas Wareham (University of Cambridge, UK)*; Adelheid Weber (Federal Ministry of Health and Women’s Affairs, Austria)*; Niels Wedderkopp (University of Southern Denmark, Denmark)*; Deepa Weerasekera (Ministry of Health, New Zealand)*; Peter H Whincup (St George’s, University of London, UK)*; Kurt Widhalm (Medical University of Vienna, Austria)*; Indah S Widyahening (Universitas Indonesia, Indonesia)*; Andrzej Wiecek (Medical University of Silesia, Poland)*; Alet H Wijga (National Institute for Public Health and the Environment, The Netherlands)*; Rainford J Wilks (The University of the West Indies, Jamaica)*; Johann Willeit (Medical University of Innsbruck, Austria)*; Peter Willeit (Medical University of Innsbruck, Austria)*; Tom Wilsgaard (UiT The Arctic University of Norway, Norway)*; Bogdan Wojtyniak (National Institute of Public Health-National Institute of Hygiene, Poland)*; Roy A Wong-McClure (Caja Costarricense de Seguro Social, Costa Rica)*; Justin YY Wong (Ministry of Health, Brunei)*; Jyh Eiin Wong (Universiti Kebangsaan Malaysia, Malaysia)*; Tien Yin Wong (Duke-NUS Medical School, Singapore)*; Jean Woo (The Chinese University of Hong Kong, China)*; Mark Woodward (University of New South Wales, Australia; University of Oxford, UK)*; Frederick C Wu (University of Manchester, UK)*; Jianfeng Wu (Shandong University of Traditional Chinese Medicine, China)*; Shouling Wu (Kailuan General Hospital, China)*; Haiquan Xu (Institute of Food and Nutrition Development of Ministry of Agriculture, China)*; Liang Xu (Capital Medical University, China)*; Uruwan Yamborisut (Mahidol University, Thailand)*; Weili Yan (Children's Hospital of Fudan University, China)*; Xiaoguang Yang (Chinese Center for Disease Control and Prevention, China)*; Nazan Yardim (Ministry of Health, Turkey)*; Xingwang Ye (University of Chinese Academy of Sciences, China)*; Panayiotis K Yiallouros (University of Cyprus, Cyprus)*; Agneta Yngve (Uppsala University, Sweden)*; Akihiro Yoshihara (Niigata University,
Japan)*; Qi Sheng You (Capital Medical University, China)*; Novie O Younger-Coleman (The University of the West Indies, Jamaica)*; Faudzi Yusoff (Ministry of Health Malaysia, Malaysia)*; Muhammad Fadhli M Yusoff (Institute of Public Health, Malaysia)*; Luciana Zaccagni (University of Ferrara, Italy)*; Vassilis Zafiropulos (Technological Educational Institute of Crete, Greece)*; Ahmad A Zainuddin (Universiti Teknologi MARA, Malaysia)*; Sabina Zambon (University of Padova, Italy)*; Antonis Zampelas (Agricultural University of Athens, Greece)*; Hana Zamrazilová (Institute of Endocrinology, Czech Republic)*; Tomasz Zdrojewski (Medical University of Gdansk, Poland)*; Yi Zeng (Duke University, USA; Peking University, China, USA)*; Dong Zhao (Capital Medical University Beijing An Zhen Hospital, China)*; Wenhua Zhao (Chinese Center for Disease Control and Prevention, China)*; Wei Zheng (Vanderbilt University, USA)*; Yingfeng Zheng (Singapore Eye Research Institute, Singapore)*; Bekbolat Zholdin (West Kazakhstan State Medical University, Kazakhstan)*; Maigeng Zhou (Chinese Center for Disease Control and Prevention, China)*; Dan Zhu (Inner Mongolia Medical University, China)*; Baurzhan Zhussupov (Kazakh National Medical University, Kazakhstan)*; Esther Zimmermann (Bispebjerg and Frederiksberg Hospitals, Denmark)*; Julio Zuñiga Cisneros (Gorgas Memorial Institute of Public Health, Panama)*