Resistência total à vancomicina em *Staphylococcus aureus* e *Staphylococcus aureus* tipo-VanA: Uma revisão de 2016

Vasco Antunes de Oliveira Tiago
Resistência total à vancomicina em *Staphylococcus aureus* e *Staphylococcus aureus* tipo-VanA: Uma revisão de 2016

Vasco Antunes de Oliveira Tiago

Orientado por:

Professor Doutor José Augusto Gamito Melo Cristino

Julho’2017
Este estudo pretende rever a literatura existente relativamente a VRSA (segundo a classificação do CLSI) e *Staphylococcus aureus* tipo-VanA em todo o Mundo. Embora ambos os termos tenham sobreposição significativa, existem diferenças importantes. Os artigos relevantes foram pesquisados nos motores de busca Google Académico e PubMed, tendo sido excluídos os artigos originais não indexados na Web of Science e os estudos negativos para o isolamento de estirpes VRSA. Após a descrição do primeiro caso, em 2002 nos EUA, seguiram-se vários outros casos, principalmente em países asiáticos, mas a maioria do conhecimento sobre estas estirpes provém da caracterização minuciosa das 16 estirpes americanas confirmadas. Apesar de tudo VRSA parece ser ainda um organismo extremamente raro e o potencial para vir a tornar-se um problema comum é desconhecido. Estas estirpes surgem quando há transferência do operão *vanA* de uma estirpe VRE para uma estirpe receptora de *Staphylococcus aureus*, que passa então a produzir precursores de peptidoglicano modificados aos quais a vancomicina se liga com uma afinidade muito baixa. A sua emergência parece exigir condições cuja conjugação é extremamente rara e, mesmo quando estas estirpes surgem e causam infeção, geralmente tem havido várias opções para tratar tais infecções com sucesso. O diagnóstico laboratorial destas estirpes é relativamente simples, mas pode ser dificultado pela utilização de métodos considerados inválidos.

Palavras-chave: *Staphylococcus aureus* vancomicina-resistente; *Staphylococcus aureus* tipo-VanA; VRSA.

O Trabalho Final exprime a opinião do autor e não da FML.

Siglas: CC, Complexo clonal (clonal cluster); CDC, Centers for Disease Control and Prevention; CIM, Concentração inibitória mínima; CFU, Unidades formadoras de colónia (colony-forming units); CLSI, Clinical and Laboratory Standards Institute; DM, Diabetes mellitus; DRC, Doença renal crónica; DVP, Doença vascular periférica; EUA, Estados Unidos da América; EUCAST, The European Committee on Antimicrobial Susceptibility Testing; HLR, Resistência de alto nível (high-level resistance); HTA, Hipertensão arterial sistémica; hVISA, Hétero-VISA; LLR, Resistência de baixo nível (low-level resistance); MRSA, *Staphylococcus aureus* meticilina-resistente (meticillin-resistant Staphylococcus aureus); NARSA, Network on Antimicrobial Resistance in *Staphylococcus aureus*; PCR, Reacção em cadeia de polimerase (polymerase chain reaction); PBP, Proteína de ligação à penicilina (penicillin-binding protein); PFGE, Electroforese em gel de campo pulsado (Pulsed-field gel electrophoresis); SCN, Estafilococos coagulase-negativos; ST, Tipo de sequência (sequence type); TSA, Teste de susceptibilidade aos antimicrobianos; VISA, *Staphylococcus aureus* vancomicina-intermédio (vancomycin-intermediate Staphylococcus aureus); VRE, *Enterococcus* vancomicina-resistente (vancomycin-resistant Enterococcus); VRSA, *Staphylococcus aureus* vancomicina-resistente (vancomycin-resistant Staphylococcus aureus); VSSA; *Staphylococcus aureus* vancomicina-susceptível (vancomycin-susceptible Staphylococcus aureus).
Índice

Introdução ... 5
Métodos .. 6
Definições ... 6
Pesquisa de Resistência à Vancomicina em *Staphylococcus aureus* ... 6
Determinação da Concentração Inibitória Mínima .. 7
Gelose de Rastreio com Vancomicina .. 7
Método de Kirby-Bauer .. 7
Métodos Automatizados ... 8
Métodos Moleculares .. 8
Métodos Colorimétricos .. 8
hVISA ... 9
VISA ... 9
Casos Reportados de Isolamento de VRSA ... 10
Estados Unidos da América ... 10
Ásia ... 15
Irão ... 15
Índia.. 16
Paquistão ... 17
Extremo Oriente ... 17
África ... 18
Brasil ... 18
Europa ... 18
Fenótipo VanA em *Staphylococcus aureus* .. 19
Mecanismo de Resistência .. 19
Precursos de Peptidoglicano Modificados ... 20
Antagonismo entre Resistência à Vancomicina e Meticilina ... 20
Custo Biológico da Expressão do Operão VanA ... 21
Estirpes VRSA Vancomicina-Dependentes .. 21
Variabilidade da Expressão de Resistência .. 22
Estirpes VRSA Não-Tipo-VanA ... 23
Transferência de Genes de Resistência de *Enterococcus* para *Staphylococcus aureus* 23
Mecanismos de Integração dos Genes de Resistência .. 24
Plasmídeos Enterocócicos Tipo-Inc18... 26
Plasmídeos Estafilocócicos Tipo-pSK41 ... 26
Co-Colonização com Organismos Precursos de VRSA .. 27
Introdução

Staphylococcus aureus é um dos agentes mais frequentemente encontrados na prática clínica, sendo responsável por uma grande parte das infecções mais graves. É da maior importância que tenhamos armas eficazes prontamente disponíveis para combater tais infecções, mas cada vez mais este organismo surge em formas resistentes a vários fármacos aos quais previamente era susceptível, diminuindo significativamente o conjunto de opções a que podemos recorrer.

A penicilina era a primeira linha até ao aparecimento e subsequente disseminação das estirpes produtoras de penicilinas. Começaram então a ser usadas as isoxazolilpenicilinas, resistentes à acção das penicilinas, o grupo ao qual pertence a meticilina, mas em 1961 surgiram as primeiras estirpes resistentes a este grupo, MRSA. A mutação das PBP2 para PBP2a tornou estas estirpes resistentes a todos os β-lactâmicos disponíveis no mercado durante largos anos, até ao lançamento recente das cefalosporinas anti-MRSA. Entretanto a meticilina deixou de ser comercializada, mas as isoxazolilpenicilinas como a flucloxacilina continuam a ser agentes de primeira linha contra as estirpes meticilina-sensíveis. Em Portugal, contudo, MRSA é um problema muito importante, correspondendo a cerca de 50% das estirpes (um dos números mais elevados a nível europeu), embora a sua prevalência pareça estar a diminuir.

A primeira linha de tratamento das estirpes MRSA tem sido – e continua a ser – a vancomicina, mas o seu lugar pode estar em risco. Recentemente tem-se observado em várias estirpes o “deslizamento da CIM” (*MIC creep*), um aumento ligeiro (1-2 mg/L) mas importante da CIM para a vancomicina, embora ainda dentro do intervalo de susceptibilidade. Adicionado à fraca actividade bactericida da vancomicina, este fenómeno pode tornar muitas estirpes tolerantes, uma vez que o melhor preditor da actividade da vancomicina é a razão entre a área sob a curva da concentração em função do tempo e a CIM. Além disso, nas últimas duas décadas temos assistido à emergência de estirpes resistentes à vancomicina. Observam-se dois grandes padrões de resistência: um padrão de resistência intermédia (VISA) e um padrão de resistência total (VRSA). Define-se ainda um subtipo de VISA, chamado hVISA, que apresenta hétero-resistência intermédia. Na presente revisão focar-se-á VRSA (segundo a classificação do CLSI) e *Staphylococcus aureus* tipo-VanA em detalhe. Ambos os termos têm sobreposição significativa, mas, embora o operão *vanA* seja o principal mediador da resistência total à vancomicina, já foram descritas estirpes VRSA *vanA*-negativas, bem como estirpes *vanA*-positivas não-VRSA.

A transferência de material genético entre *Enterococcus* spp. e *Staphylococcus aureus*, hoje reconhecidamente central na emergência de VRSA, foi verificada experimentalmente a partir dos anos 80. Apenas em 1992, contudo, se verificaria a possibilidade da emergência de estirpes VRSA tipo-VanA, quando Noble *et al* conseguiram, em laboratório, a transferência por conjugação dos genes de resistência à vancomicina de *Enterococcus faecalis* para *Staphylococcus aureus*. Mais dez anos passariam até ao isolamento da primeira estirpe VRSA clínica, na cidade de Detroit, EUA.
Métodos

Os artigos que servem de fundamento para o estudo actual foram obtidos através de pesquisa pelo Google Académico e PubMed, em Dezembro de 2016, pelas palavras-chave “vanA”; “vancomycin”; “resistant” ou “resistance”; e “Staphylococcus aureus”. Outros artigos elegíveis foram encontrados através das referências bibliográficas. Apenas foi usado material de acesso gratuito conforme fornecido pela Universidade de Lisboa. Todos os artigos originais não indexados na Web of Science (com a exceção de dois artigos relevantes para a correção do texto), bem como os estudos em que não se isolou qualquer estirpe VRSA, foram excluídos.

Definições

Até 2006 o CLSI definia resistência total à vancomicina por uma CIM ≥ 32 mg/L, enquanto as estirpes com CIM de 8-16 mg/L eram consideradas intermediately resistentes. Vários casos de insucesso terapêutico onde não seria expectável levaram à criação de pontos de corte mais baixos, definindo-se resistência total por uma CIM ≥ 16 mg/L e resistência intermédia por uma CIM 4-8 mg/L. Estirpes com CIM ≤ 2 mg/L são consideradas susceptíveis. Esta alteração não aumenta significativamente o diagnóstico de estirpes resistentes, mas parece aumentar o valor preditivo do resultado da susceptibilidade à vancomicina.

Dentro da resistência total, distingue-se ainda entre estirpes resistentes de alto (HLR-VRSA) e baixo nível (LLR-VRSA), embora não existam pontos de corte definidos para esta distinção. Esta classificação é usada principalmente para as estirpes americanas, LLR-VRSA correspondendo a VRS2 e VRS3a e HLR-VRSA correspondendo a todas as outras isoladas até à data.

As recomendações do EUCAST estão em vigor nos laboratórios portugueses desde 2014. Em comum com as recomendações do CLSI, o EUCAST recomenda que seja determinada a CIM, mas considera que uma CIM de 2 mg/L é o limite superior da susceptibilidade e que qualquer valor superior corresponde a uma estirpe resistente. Por esse motivo importa referir que o termo “VRSA” será sempre usado neste trabalho em acordo com a classificação do CLSI.

As estirpes hVISA, achados relativamente mais comuns, são aparentemente os precursores que geram estirpes VISA após exposição à vancomicina, que contêm subpopulações de células-filha intermediately resistentes com uma frequência de 1/10⁵ a 1/10⁶, mas em que as células-mãe são susceptíveis.

Pesquisa de Resistência à Vancomicina em Staphylococcus aureus

O método de referência na pesquisa de resistência à vancomicina é a determinação da CIM por diluição ou microdiluição em tubo, mas muitos laboratórios recorrem a outras técnicas mais rápidas e simples, embora por vezes inadequadas e com resultados menos fiáveis. Além de conhecer os métodos apropriados, todos os laboratórios devem desenvolver o seu próprio procedimento para a detecção de VRSA, tal
como o clínico deve conhecer o método de pesquisa da susceptibilidade à vancomicina no Laboratório com que trabalha25. É muito importante identificar rapidamente estas estirpes, não só para prevenir o insucesso terapêutico mas também para evitar efeitos deletérios causados pela presença de vancomicina em concentrações subinibitórias26-29.

Todas as estirpes não-susceptíveis são consideradas incomuns, pelo que devem ser guardadas até que, por métodos válidos, se tenha confirmado a CIM, a espécie e a pureza da cultura. Após a confirmação a comissão de controlo de infecção deve ser notificada e a estirpe enviada para um laboratório de referência para confirmar o fenótipo18,22.

DETERMINAÇÃO DA CONCENTRAÇÃO INIBITÓRIA MÍNIMA

A CIM para a vancomicina deve ser determinada para todas as estirpes de *Staphylococcus aureus*, após 24 horas de incubação16,19,22. Recomenda-se a diluição16 ou microdiluição em tubo19,22 com caldo de Mueller-Hinton ajustado para catiões ou diluição em gelose com meio de Mueller-Hinton16.

O e-test, embora aparente uma fiabilidade algo reduzida na detecção de VISA30, parece ser uma boa opção na identificação de VRSA, incluindo estirpes LLR-VRSA31,32. Parece sobrestimar a CIM23,33, pelo que pode ser um melhor preditor da eficácia da terapêutica com vancomicina que a diluição em tubo7,24, além de ser suficientemente rápido para orientar o tratamento7. No CDC este teste também é usado na confirmação de VRSA22.

GELOSE DE RASTREIO COM VANCOMICINA

Segundo as orientações do CLSI16, o rastreio de *Staphylococcus aureus* com CIM para vancomicina de pelo menos 8 mg/L deve ser feito pela inoculação de uma placa de gelose Brain-Heart com 6 μg/mL de vancomicina, a partir de um inóculo de 0,5 McFarland. Deve ser colocada uma gota de 10 μL na superfície da gelose, ou pode inocular-se uma área determinada da placa com zaragatoa. Este método é pouco sensível para a identificação de estirpes com CIM de 4 mg/L16,22,23, mas pode ser o mais conveniente para identificar VRSA rapidamente35,34. Até oito estirpes podem ser testadas em simultâneo numa única placa, que pode ser preparada pelo próprio laboratório mas que, por questões de qualidade, deve ser preferivelmente adquirida comercialmente22. As placas devem ser incubadas durante 24 horas16. O crescimento de mais de uma colónia indica presuntivamente susceptibilidade reduzida à vancomicina e exige a determinação da CIM por um método validado.

MÉTODO DE KIRBY-BAUER

Antes da exclusão deste método como inapropriado para a detecção de resistência16,19 o CLSI recomendava a sua utilização como método de rastreio15. Era utilizado um disco com 30 μg de vancomicina; após 24 horas de incubação em meio de Mueller-Hinton uma estirpe presumivelmente susceptível era definida por um halo
de inibição com pelo menos 15 mm de diâmetro. Nas estirpes com halos menores deveria ser determinada a CIM com um método de referência para confirmar o fenótipo15.

Rapidamente após o aparecimento das primeiras estirpes VISA se tornou evidente que este método não as distingue de VSSA16,23,30. Este teste muitas vezes falha na detecção de qualquer nível de resistência, com a excepção do fenótipo HLR mediado pelo operon \textit{vanA}, e mesmo essas estirpes podem apresentar resultados invulgares que dificultam a sua interpretação21,35.

Desde 2009 o CLSI considera o método de Kirby-Bauer inválido para o diagnóstico de susceptibilidade à vancomicina em \textit{Staphylococcus aureus}23,36.

MÉTODOS AUTOMATIZADOS

Alguns métodos automáticos também falham em quantificar exactamente a resistência da estirpe, seja intermédia ou total21,23,25,30,31,37-39. Ao longo do tempo os fabricantes introduziram melhorias que aumentaram a sua capacidade de diagnóstico, embora a acuidade ainda não seja a ideal40, e não permita ainda detectar uma CIM aumentada dentro da gama da susceptibilidade7. Hoje em dia é consensual que a CIM determinada é na maioria dos casos suficientemente próxima da CIM real para identificar correctamente uma estirpe como VRSA22,23,34,37,39, embora sejam possíveis falsos positivos pela inclusão de estirpes VISA22. É importante confirmar um resultado de resistência por um método de referência.

MÉTODOS MOLECULARES

A presença do operon \textit{vanA} apenas pode ser determinada por métodos moleculares. Nos EUA, o CDC examina por PCR todas as estirpes VRSA confirmadas22. Contudo, vários grupos têm desenvolvido métodos diversos para a pesquisa do gene \textit{vanA}. Em 2004 Depardieu \textit{et al}41 criaram um um método de PCR múltipla capaz de identificar os vários genes \textit{van} em várias espécies de \textit{Enterococcus} e \textit{Staphylococcus} que, em simultâneo, identifica estes genes em VRSA e exclui a contaminação por \textit{Enterococcus} spp.. Este método revelou ser bastante preciso na amplificação dos vários alvos utilizados, tendo sido também eficaz na detecção do gene \textit{vanA} em estirpes mais recentes42-44.

Mais tarde, outros grupos criaram outros métodos, mas todos eles incapazes de excluir a contaminação da amostra por enterococos. Estes incluem dois métodos de hibridização molecular45,46 e um outro método de PCR múltipla47.

MÉTODOS COLORIMÉTRICOS

Coban \textit{et al}48 descreveram dois métodos colorimétricos para a detecção rápida de resistência à vancomicina: um com aplicação de resazurina e um ensaio de nitrato redutase. Apesar de uma precisão algo reduzida, estes testes aparentaram ser fiáveis para rastreio, e podem vir a constituir alternativas eficazes, rápidas, baratas e potencialmente automatizáveis, e eventualmente chegar à prática clínica de rotina.
hVISA

A pesar dos desenvolvimentos no diagnóstico de VISA e VRSA, ainda não existe um método prático e eficaz para utilizar por rotina na pesquisa de hVISA, nem estão desenvolvidos métodos moleculares para tal fim. Sendo testadas por métodos convencionais, estas estirpes são reportadas pelo Laboratório de Microbiologia como susceptíveis à vancomicina, uma vez que a CIM não parece correlacionar-se com a presença de hétéro-resistência. O melhor método disponível é a análise populacional, mas é demorada e tecnicamente exigente. Existe um método modificado muito eficaz, amplamente usado no contexto da investigação, mas também não tem lugar na prática clínica diária. O macro-ε-test, uma variante do ε-test que utiliza um inóculo de 2 McFarland e 48 horas de incubação, é uma forma barata e fiável para a detecção de hVISA, mas não permite determinar uma CIM fiável. Existem ainda outras alternativas, mas com sensibilidades variáveis. A identificação de uma estirpe hVISA, embora importante para a predição do sucesso terapêutico, continua a ser um desafio.

VISA

Antes de qualquer publicação sobre um isolamento clínico de *Staphylococcus aureus* com qualquer grau de resistência à vancomicina foram descritos alguns mutantes laboratoriais com resistência intermédia, e até mesmo total, após várias passagens em meio de cultura com vancomicina, mas com um mecanismo de resistência diferente dos fenótipos *van* de *Enterococcus* spp.. Em 1996 uma destas estirpes foi isolada num hospital japonês. A esta estirpe chamou-se Mu50, e esta manteve-se como a estirpe VISA prototípica. A primeira estirpe hVISA reportada, chamada Mu3 (a estirpe hVISA prototípica), foi isolada no mesmo hospital, no mesmo ano, e apresentava um padrão de PFGE semelhante ao de Mu50. O primeiro caso conhecido de infecção por VISA, contudo, ocorreu em França, em 1995. O estudo detalhado destas estirpes sugeriu que a resistência intermédia se deveria à produção de uma parede celular invulgarmente espessa, com maior número de precursores de peptidoglicano, de modo a absorver uma quantidade maior de moléculas de vancomicina até que esta atingisse a bactéria em quantidades suficientes para ter efeito. Também se notou que nestas estirpes existe uma inibição da separação celular, bem como um aumento da renovação da parede celular durante a pressão com vancomicina, diminuindo ainda mais o seu efeito.

Foram rapidamente reportadas várias estirpes VISA e hVISA de várias partes do Mundo após a publicação dos casos japoneses. Não se verificou que os genes *van*, encontrados nas estirpes VRE, estivessem envolvidos no mecanismo de resistência. Em Portugal o primeiro isolamento de VISA ocorreu em 2006, num hospital de Braga. Uma explicação detalhada sobre as estirpes VISA está fora do contexto da revisão actual e pode ser encontrada na Referência.

Referência: [50]
Casos Reportados de Isolamento de VRSA

Até à data existem vários casos reportados de infecção e colonização por VRSA por todo o Mundo. Alguns casos minuciosamente descritos e caracterizados foram reportados nos EUA 12,13,32; 58-61, Portugal 62, Brasil 63,64, Índia 65, Irão 66,67 e Paquistão 68. A caracterização molecular destas estirpes está explicitada na Tabela 1, de acordo com a ordem apresentada no texto. Estes casos demonstram que VRSA tem aparecido em várias partes do Mundo. É muito provável que existam vários outros casos reais que nunca tenham sido notados ou reportados, inclusivamente prévios ao primeiro caso reportado, mas o facto é que as estirpes detalhadamente descritas são ainda muito escassas. As estirpes aqui descritas não são todas as reportadas: muitos estudos descrevendo estirpes VRSA foram excluídos por não se encontrarem indexados na Web of Science. Salvo indicação em contrário, as estirpes aqui descritas foram identificadas por métodos validados.

A maioria das estirpes VRSA reportadas foi detectada em estudos de prevalência de VRSA ou estudos dos padrões locais de susceptibilidade aos antimicrobianos de Staphylococcus aureus. A maioria dos estudos em que de facto foram encontradas estirpes VRSA foi levada a cabo em países asiáticos. Muitos destes recorreram a métodos validados16,19 para a identificação destas estirpes. No entanto, no estudo actual é certo que, pelos métodos empregues na pesquisa de artigos científicos, existe um viés na amostra de artigos relativos aos padrões locais de resistência aos antimicrobianos de Staphylococcus aureus, com tendência para a sobrestimação da prevalência real destas estirpes. Por esse motivo opta-se por não avançar com dados relativos a tal prevalência.

Uma característica notável nas infecções por VRSA é o tipo de infecções a que estas estirpes estão associadas. A larga maioria destas estirpes foi isolada em feridas crônicas e outras infecções da pele e tecidos moles, em doentes com múltiplas morbidades, notavelmente DM e DRC, e a mortalidade e morbidade atribuíveis a estas infecções são relativamente reduzidas13.

ESTADOS UNIDOS DA AMÉRICA

Após o aparecimento das primeiras estirpes VISA nos EUA, foi fundada a NARSA, que estabeleceu e mantém um repositório de estirpes caracterizadas, disponíveis para serem acedidas e usadas por cientistas interessados25. Um achado interessante neste país é a localização relativamente restrita dos isolamentos. Oito dos 10 primeiros casos confirmados ocorreram no estado do Michigan. Após a identificação do último desses, os 4 casos confirmados seguintes ocorreram todos no estado de Delaware, de onde nenhum caso tinha sido reportado antes. O CDC confirmou o isolamento de um total de 16 estirpes VRSA nestes 14 casos, todas positivas por PCR para os genes vanA e mecA. Além destes 14 casos, existem pelo menos mais 4 estirpes VRSA reportadas neste país, duas na Pensilvânia81 e duas em Nova Iorque82. Estas quatro estirpes não foram caracterizadas, pelo que é desconhecido se o fenótipo VRSA foi confirmado por métodos de
referência. No contexto do terceiro caso foram ainda isoladas três estirpes VISA *vanA*-positivas, embora essas estirpes pareçam ser variantes de VRS3a com um grau de resistência mais baixo.

As características clínicas de cada um destes casos estão resumidas na Tabela 2.

A primeira estirpe VRSA detectada no Mundo, VRS1, foi isolada em Junho de 2002 na cidade de Detroit, Michigan\(^2\), de uma doente com 40 anos de idade com múltiplas morbilidades. Vários cursos de antibioticoterapia foram administrados no contexto de úlcera crônica das extremidades inferiores por neuropatia diabética, alguns dos quais incluíam vancomicina\(^12,35\). Em Abril de 2002 um dos dedos do pé foi amputado por gangrena; a doente subsequentemente desenvolveu bacteriemia por MRSA causada por um enxerto arteriovenoso de hemodiálise infectado. A doente foi tratada com vancomicina e rifampicina e o enxerto foi substituído por um catéter temporário, que foi depois removido por infecção por MRSA. Foi colocado um segundo, que depois foi substituído por um terceiro que infectou em Junho; as culturas da ponta do catéter revelaram MR-VRSA e VR-*Enterococcus faecalis*\(^35\). A infecção parecia resolvida uma semana após a remoção do catéter, mas duas úlceras plantares foram avaliadas por suspeita de infecção; as culturas revelaram VRSA, VR-*Enterococcus faecalis*, *Klebsiella oxytoca* e *Candida albicans*. A doente foi tratada com sucesso com co-trimoxazol, metronidazol e tratamento agressivo da ferida, incluindo desbridamento cirúrgico quando necessário\(^12,35\).

A segunda estirpe VRSA, inicialmente chamada HMC3 (VRS2)\(^87\), foi detectada no Centro Médico de Hershey, na Pensilvânia, em Setembro de 2002. Um doente de 70 anos foi internado por uma úlcera calcaneana crônica com possível osteomielite\(^31,58\). Uma cultura da úlcera foi positiva para MRSA, mas não *Enterococcus* spp.. No entanto, era conhecido o estado de co-colonização por VRE e MRSA, embora a espécie de VRE não tenha sido identificada\(^74\). A possibilidade de resistência à vancomicina foi inicialmente levantada pelo método de Kirby-Bauer e por uma placa de rastreio com vancomicina, e posteriormente confirmada por ε-test\(^31,58,74\). A infecção parecia estar a resolver, mas o doente acabou por falecer devido às comorbilidades\(^13\).

A terceira estirpe VRSA foi detectada em Março de 2004, em Nova Iorque. Esta estirpe, chamada VRSA 595 (VRS3a), foi isolada da urina de uma doente de 63 anos com tubo de nefrostomia que apresentava um biofilme polimicrobiano\(^38\), embora o teste inicial com métodos automáticos tenha falhado em detectar a resistência\(^32\). Também foram isoladas três estirpes VISA *vanA*-positivas\(^38\). Um derivado de VRSA 595, VRSA 5734 (VRS3b), isolado 4 semanas mais tarde no mesmo local anatômico, apresentava uma CIM para a vancomicina consistentemente mais elevada e estável\(^38\). Apesar do tratamento as culturas para VRSA foram persistentemente positivas e a doente acabou por falecer num internamento em Abril de 2005\(^13\).

Os casos americanos 4 a 10 ocorreram todos no Michigan e encontram-se descritos na Tabela 2. VRS11a e VRS11b, isoladas em conjunto\(^85,86\), foram as primeiras a ser encontradas no estado de Delaware. VRS11b é uma variante de VRS11a constitutivamente resistente à vancomicina, enquanto VRS11a é vancomicina-dependente e indutivelmente resistente\(^44\).
<table>
<thead>
<tr>
<th>NOMES</th>
<th>LINHAGEM</th>
<th>LOCALIZAÇÃO, ANO</th>
<th>CIM (mg/L)</th>
<th>DADOR VRE MAIS PROVÁVEL</th>
<th>LOCAL ANATOMICO</th>
<th>Inc18-TIPO EM VRE/VRSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRS1; VRSA-1; MI-1; MI-VRSA</td>
<td>USA100, CC5</td>
<td>Michigan, 2002</td>
<td>1024</td>
<td>E. faecalis (mesmas amostras)</td>
<td>Ponta de catéter, úlcera plantar</td>
<td>Apenas VRE</td>
</tr>
<tr>
<td>VRS2; HMC3; VRSA-2; PA-2; PA-VRSA</td>
<td>USA100, CC5</td>
<td>Pensilvânia, 2002</td>
<td>32</td>
<td>Não esclarecido</td>
<td>Úlcera calcaneana</td>
<td>NA em VRE, negativo em VRSA</td>
</tr>
<tr>
<td>VRS3a; VRSA-3a; VRSA 595; NY-3</td>
<td>USA800, CC5</td>
<td>Nova Iorque, 2004</td>
<td>64</td>
<td>E. faecium (mesma amostra)</td>
<td>Urina e tubo de nefrostomia</td>
<td>Não (VRE possui plasmídeo conjugativo)</td>
</tr>
<tr>
<td>VRS3b; VRSA-3b; VRSA 5734</td>
<td>USA800, CC5</td>
<td>Nova Iorque, 2004</td>
<td>> 128</td>
<td>E. faecium (mesmo local anatômico)</td>
<td>Urina</td>
<td>ND</td>
</tr>
<tr>
<td>VRS4; VRSA-4; MI-4</td>
<td>USA100, CC5</td>
<td>Michigan, 2005</td>
<td>256</td>
<td>E. faecalis (cultura rectal)</td>
<td>Ferida com gangrena num dedo do pé</td>
<td>Ambos</td>
</tr>
<tr>
<td>VRS5; VRSA-5; MI-5</td>
<td>USA100, CC5</td>
<td>Michigan, 2005</td>
<td>512</td>
<td>E. faecalis (mesma amostra)</td>
<td>Ferida cirúrgica (paniceleoctomia e reparação de hérnia abdominal)</td>
<td>Ambos</td>
</tr>
<tr>
<td>VRS6; VRSA-6; MI-6</td>
<td>USA100, CC5</td>
<td>Michigan, 2005</td>
<td>1024</td>
<td>E. faecalis, E. avium (mesma amostra)</td>
<td>Úlceras plantares</td>
<td>Apenas VRE (ambos)</td>
</tr>
<tr>
<td>VRS7; VRSA-7; MI-7</td>
<td>USA100, CC5</td>
<td>Michigan, 2006</td>
<td>512 (VD, MS)</td>
<td>Não isolado</td>
<td>Ferida de fascite necrotizante</td>
<td>NA em VRE, positivo em VRSA</td>
</tr>
<tr>
<td>VRS8; VRSA-8; MI-8</td>
<td>USA100, CC5</td>
<td>Michigan, 2007</td>
<td>1024</td>
<td>Não isolado</td>
<td>Ferida plantar</td>
<td>NA em VRE, negativo em VRSA</td>
</tr>
<tr>
<td>VRS9; VRSA-9; MI-9</td>
<td>USA100, CC5</td>
<td>Michigan, 2007</td>
<td>1024 (VD, MS)</td>
<td>E. faecalis (mesma amostra)</td>
<td>Ferida plantar</td>
<td>Não</td>
</tr>
<tr>
<td>VRS10; VRSA-10; MI-10</td>
<td>USA100, CC5</td>
<td>Michigan, 2009</td>
<td>> 256</td>
<td>E. gallinarum (cultura da região inguinal)</td>
<td>Ferida plantar</td>
<td>Ambos</td>
</tr>
<tr>
<td>VRS11a; VRSA-11a; DE-11a</td>
<td>USA100, CC5</td>
<td>Delaware, 2010</td>
<td>> 256 (VD, MS)</td>
<td>E. faecalis (mesma amostra)</td>
<td>Exsudado purulento de infecção de prótese articular</td>
<td>Ambos</td>
</tr>
<tr>
<td>VRS11b; VRSA-11b; DE-11b*</td>
<td>USA100, CC5</td>
<td>Delaware, 2010</td>
<td>> 256 (CR, MS)</td>
<td>E. faecalis (mesma amostra)</td>
<td>Exsudado purulento de infecção de prótese articular</td>
<td>Ambos</td>
</tr>
<tr>
<td>DE-12</td>
<td>Não-tipável por PFGE, CC5</td>
<td>Delaware, 2010</td>
<td>ND</td>
<td>E. gallinarum (cultura rectal)</td>
<td>Exsudado vaginal</td>
<td>Apenas VRE</td>
</tr>
<tr>
<td>DE-13</td>
<td>USA1100, CC30</td>
<td>Delaware, 2012</td>
<td>256</td>
<td>E. faecalis (cultura rectal)</td>
<td>Ferida plantar</td>
<td>Ambos</td>
</tr>
<tr>
<td>VRSA 14</td>
<td>USA100, CC5</td>
<td>Delaware, 2015</td>
<td>512</td>
<td>E. faecalis (mesma amostra)</td>
<td>Ferida crônica de dedo do pé</td>
<td>ND</td>
</tr>
<tr>
<td>Não nomeada</td>
<td>ST1283</td>
<td>Mashhad, 2012</td>
<td>512</td>
<td>Não isolado</td>
<td>Aspirado brônquico</td>
<td>ND</td>
</tr>
<tr>
<td>Não nomeada</td>
<td>ND</td>
<td>Teerão, 2012</td>
<td>512</td>
<td>ND</td>
<td>Exsudado purulento (abcesso)</td>
<td>ND</td>
</tr>
<tr>
<td>STM2</td>
<td>ND</td>
<td>Calcutá, 2008</td>
<td>64</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>CP2</td>
<td>ND</td>
<td>Karachi, 2008</td>
<td>16</td>
<td>ND</td>
<td>Hemocultura</td>
<td>ND</td>
</tr>
<tr>
<td>BR-VRSA</td>
<td>USA300, ST8</td>
<td>São Paulo, 2012</td>
<td>> 256</td>
<td>E. faecalis (cultura rectal)</td>
<td>Hemocultura</td>
<td>Não</td>
</tr>
<tr>
<td>Não nomeada</td>
<td>CC5</td>
<td>São Paulo, 2012</td>
<td>256 (MS)</td>
<td>E. faecalis (cultura rectal)</td>
<td>Hemocultura</td>
<td>ND</td>
</tr>
<tr>
<td>Não nomeada</td>
<td>ST105**</td>
<td>Lisboa, 2013</td>
<td>1024</td>
<td>E. faecalis (mesma amostra)</td>
<td>Ferida de amputação de dedo do pé</td>
<td>Ambos</td>
</tr>
</tbody>
</table>

Tabela 1 – Características moleculares de várias estirpes VRSA. CIM, Concentração inibitória mínima; CR, Constitutivamente resistente; MS, Meticilina-sensível; NA, Não aplicável; ND, Não disponível; PFGE, Electroforese em gel de campo pulsado; SD, Sentido directo; SI, Sentido inverso; VD, Vancomicina-dependente; VRE, *Enterococcus* resistente à vancomicina; VRSA, *Staphylococcus aureus* resistente à vancomicina. *Co-isolado com VRS11a, constitutivamente resistente à vancomicina. **Variaete de locus único de CC5. Continua na página seguinte.
<table>
<thead>
<tr>
<th>NOMES</th>
<th>pSK41-TIPO ENCONTRADO</th>
<th>PLASMÍDEO vanA-POSITIVO EM VRSA</th>
<th>TIPO DE TN1546</th>
<th>REFERÊNCIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRS1; VRSA-1; MI-1; MI-VRSA</td>
<td>Sim (VRSA e MRSA relacionado)</td>
<td>Plasmídeo estafilocócico pSK41-tipo (pLW1043, 57,9 kb)</td>
<td>Prototípico</td>
<td>35,60,69-72</td>
</tr>
<tr>
<td>VRS2; HMC3; VRSA-2; PA-2; PA-VRSA</td>
<td>Sim (VRSA)</td>
<td>Plasmídeo enterocócico quimérico (120 kb)</td>
<td>Derivado de prototípico (deleção de 3098n em 5’, eliminando orf1; IS1216V SD em 5’; IS1251 SI entre vanS e vanH)</td>
<td>31,60,71-75</td>
</tr>
<tr>
<td>VRS3a; VRSA-3a; VRSA 595; NY-3</td>
<td>Sim (MRSA relacionado)</td>
<td>Plasmídeo enterocócico (pLW595, 100 kb)</td>
<td>Derivado de prototípico (deleção de 3343n em 5’, eliminando orf1 e parte de orf2; IS1216V SI em 5’; IS1251 SI entre vanS e vanH)</td>
<td>38,60,72,75</td>
</tr>
<tr>
<td>VRS3b; VRSA-3b; VRSA 5734</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>38,76</td>
</tr>
<tr>
<td>VRS4; VRSA-4; MI-4</td>
<td>Não</td>
<td>Plasmídeo enterocócico Inc18-tipo</td>
<td>Prototípico</td>
<td>13,60,72,75</td>
</tr>
<tr>
<td>VRS5; VRSA-5; MI-5</td>
<td>Não</td>
<td>Plasmídeo enterocócico Inc18-tipo</td>
<td>Prototípico</td>
<td>13,60,72,75</td>
</tr>
<tr>
<td>VRS6; VRSA-6; MI-6</td>
<td>Não</td>
<td>Plasmídeo estafilocócico</td>
<td>Prototípico</td>
<td>13,60,72,75</td>
</tr>
<tr>
<td>VRS7; VRSA-7; MI-7</td>
<td>Não</td>
<td>Plasmídeo enterocócico Inc18-tipo</td>
<td>Prototípico</td>
<td>13,40,42,60,72,75</td>
</tr>
<tr>
<td>VRS8; VRSA-8; MI-8</td>
<td>Sim (VRSA e MRSA relacionado)</td>
<td>Plasmídeo estafilocócico quimérico, pSK41-tipo</td>
<td>Prototípico</td>
<td>59,60,75,77</td>
</tr>
<tr>
<td>VRS9; VRSA-9; MI-9</td>
<td>Sim (VRSA)</td>
<td>Plasmídeo estafilocócico pSK41-tipo</td>
<td>Prototípico</td>
<td>43,59,60,75,77</td>
</tr>
<tr>
<td>VRS10; VRSA-10; MI-10</td>
<td>Não</td>
<td>Plasmídeo enterocócico</td>
<td>Prototípico</td>
<td>44,60,75,78</td>
</tr>
<tr>
<td>VRS11a; VRSA-11a; DE-11a</td>
<td>Sim (VRSA)</td>
<td>Plasmídeo quimérico (junção de dois plasmídeos, um enterocócico e um estafilocócico)</td>
<td>Derivado de prototípico (ISEf1 entre vanX e vanY)</td>
<td>44,60,75</td>
</tr>
<tr>
<td>VRS11b; VRSA-11b; DE-11b*</td>
<td>Sim (VRSA)</td>
<td>Plasmídeo quimérico (junção de dois plasmídeos, um enterocócico e um estafilocócico)</td>
<td>Derivado de prototípico (ISEf1 entre vanX e vanY)</td>
<td>60,75</td>
</tr>
<tr>
<td>DE-12</td>
<td>Não</td>
<td>ND</td>
<td>ND</td>
<td>60</td>
</tr>
<tr>
<td>DE-13</td>
<td>Sim (MRSA não relacionado)</td>
<td>ND</td>
<td>ND</td>
<td>60</td>
</tr>
<tr>
<td>VRS14</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>61</td>
</tr>
<tr>
<td>Não nomeada</td>
<td>ND</td>
<td>Plasmídeo > 10 kb</td>
<td>Gene vanA prototípico</td>
<td>66</td>
</tr>
<tr>
<td>Não nomeada</td>
<td>ND</td>
<td>ND</td>
<td>Gene vanA prototípico; vanR e vanS com a dimensão esperada; prováveis sequências de inserção</td>
<td>67</td>
</tr>
<tr>
<td>STM2</td>
<td>ND</td>
<td>Plasmídeo 53,4 kb</td>
<td>Prototípico</td>
<td>65</td>
</tr>
<tr>
<td>CP2</td>
<td>ND</td>
<td>ND</td>
<td>Derivado de prototípico (sequência truncada, deleção de orf1, sequência de inserção)</td>
<td>68</td>
</tr>
<tr>
<td>BR-VRSA</td>
<td>Não</td>
<td>pBRZ01 (55,7 kb)</td>
<td>Derivado de prototípico (deleção de 3397n em 5’, eliminando orf1 e parte de orf2; IS1216V em 5’; deleção de 96 bp a jusante de vanZ, com inserção de genes de resolvase e transposase enterocócicos Tn3)</td>
<td>63,64</td>
</tr>
<tr>
<td>Não nomeada</td>
<td>ND</td>
<td>Plasmídeo 55,7 kb (semelhante a pBRZ01)</td>
<td>ND</td>
<td>63,64</td>
</tr>
<tr>
<td>Não nomeada</td>
<td>Não</td>
<td>Plasmídeo enterocócico Inc18-tipo</td>
<td>Derivado de prototípico (ISEf1 entre vanX e vanY)</td>
<td>62,79,80</td>
</tr>
<tr>
<td>CASO</td>
<td>LOCALIZAÇÃO</td>
<td>ANO, MÊS</td>
<td>IDADE, SEXO</td>
<td>LOCAL ANATÔMICO</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>VRS1</td>
<td>Michigan</td>
<td>2002, Junho</td>
<td>40, F</td>
<td>Ponta de catéter, úlcera plantar</td>
</tr>
<tr>
<td>VRS2</td>
<td>Pensilvânia</td>
<td>2002, Setembro</td>
<td>70, M</td>
<td>Últera calcaneana</td>
</tr>
<tr>
<td>VRS3a</td>
<td>Nova Iorque</td>
<td>2004, Março</td>
<td>63, F</td>
<td>Urina e tubo de nefrostomia</td>
</tr>
<tr>
<td>VRS3b</td>
<td>Nova Iorque</td>
<td>2004, Março</td>
<td>63, F</td>
<td>Urina e tubo de nefrostomia</td>
</tr>
<tr>
<td>VRS4</td>
<td>Michigan</td>
<td>2005, Março</td>
<td>78, M</td>
<td>Ferida com gangrena num dedo do pé</td>
</tr>
<tr>
<td>VRS7</td>
<td>Michigan</td>
<td>2006, Outubro</td>
<td>43, F</td>
<td>Ferida de fascite necrotizante</td>
</tr>
<tr>
<td>VRS8</td>
<td>Michigan</td>
<td>2007, Outubro</td>
<td>48, F</td>
<td>Ferida plantar</td>
</tr>
<tr>
<td>VRS9</td>
<td>Michigan</td>
<td>2007, Dezembro</td>
<td>54, F</td>
<td>Ferida plantar</td>
</tr>
<tr>
<td>VRS10</td>
<td>Michigan</td>
<td>2009</td>
<td>53, F</td>
<td>Ferida plantar</td>
</tr>
<tr>
<td>VRS11a</td>
<td>Delaware</td>
<td>2010</td>
<td>63, F</td>
<td>Exsudado purulento de infecção de prótese articular</td>
</tr>
<tr>
<td>VRS11b</td>
<td>Delaware</td>
<td>2010</td>
<td>ND, F</td>
<td>Exsudado vaginal</td>
</tr>
<tr>
<td>DE-12</td>
<td>Delaware</td>
<td>2010</td>
<td>ND, F</td>
<td>Exsudado vaginal</td>
</tr>
<tr>
<td>DE-13</td>
<td>Delaware</td>
<td>2012, Março</td>
<td>70, M</td>
<td>Ferida plantar</td>
</tr>
<tr>
<td>VRSA 14</td>
<td>Delaware</td>
<td>2015, Fevereiro</td>
<td>ND, ND</td>
<td>Ferida plantar</td>
</tr>
</tbody>
</table>

Tabela 2 – Características clínicas dos casos americanos de isolamento de VRSA.
CIM, concentração inhibitória mínima; DAC, doença arterial coronária; DM, diabetes mellitus; DRC, doença renal crónica; DRCH, doença renal crónica em hemodiálise; DVP, doença vascular periférica; EM, esclerose múltipla; F, Feminino; EUA, Estados Unidos da América; HTA, hipertensão arterial; ITU, infecção do tracto urinário; M, Masculino; MDT, microdiluição em tubo; MNS, meios não-selectivos; ND, não disponível; PCR, polymerase chain reaction; SVA, substituição de válvula aórtica; UCMI, úlcera crónica dos membros inferiores; VRE, Enterococcus resistente à vancomicina.
O 13º caso confirmado de infecção por VRSA nos EUA, e o terceiro reportado em Delaware, ocorreu em Março de 2012. Um homem de 70 anos de idade foi internado para tratamento de ferida plantar crónica e osteomielite. As culturas iniciais revelaram MRSA, contra o qual se iniciou antibioticoterapia com vancomicina. Antes de completar o tratamento o doente teve alta, mas a ferida continuou a drenar pus. Dois meses após a alta novas culturas revelaram VRSA. Esta estirpe destaca-se das outras por ser a única americana pertencente a uma linhagem associada a infecções na comunidade.

Os restantes casos confirmados pelo CDC encontram-se descritos na Tabela 2. Além dos 14 casos confirmados pelo CDC, foram reportadas pelo menos quatro outras estirpes VRSA nos EUA. Credito et al reportaram a utilização de 3 estirpes VRSA clinicamente isoladas no Centro Médico de Hershey num estudo. Os autores não esclarecem as circunstâncias destes isolamentos, nem caracterizam as estirpes. Tendo em conta que neste centro médico já tinha sido isolada uma estirpe em 2002, isto significa que foram isoladas pelo menos mais duas estirpes na Pensilvânia, embora não confirmadas pelo CDC.

Em 2012 foram reportados dois casos de endoftalmite causados por VRSA. Embora não seja directamente divulgada, Nova Iorque é a localização mais provável. Ambos os casos ocorreram em homens idosos com múltiplas patologias, incluindo HTA, doença cardíaca e internamentos de repetição. Ambos os doentes tinham sido previamente submetidos a cirurgia à catarata e antibioticoterapia profiláctica sem vancomicina, mas desenvolveram endoftalmite no pós-operatório. O padrão de susceptibilidades foi determinado pelo sistema automático Vitek®, mas não foi feita qualquer caracterização destas estirpes nem reportada confirmação por métodos de referência. Os doentes foram tratados com sucesso com combinação oral de linezolida e minociclina, seguida de uma combinação oral de minociclina e rifampicina. O segundo doente também recebeu combinação intra-vítica de quinupristina/dalfopristina e amicacina.

ÁSIA

A larga maioria das estirpes VRSA foi descrita em países asiáticos, mas a relativa escassez na utilização de métodos confirmatórios e o número por vezes discrepantemente elevado de estirpes VRSA detectadas sugerem que várias destas estirpes são na verdade falsos positivos. Não obstante, o isolamento repetido de várias estirpes VRSA na Índia e no Irão levanta um possível interesse em posterior investigação nestas partes do Mundo, já que não é de excluir que, pela eventual existência de condições locais particulares, estas regiões do Mundo sejam de facto endêmicas para estas estirpes, inclusive com mecanismos de resistência ou de transmissão de genes de resistência ainda não estudados. Nenhuma destas possibilidades foi explorada até à data.

IRÃO

As cinco primeiras estirpes VRSA reportadas fora dos EUA ocorreram em 2003 na cidade de Teerão, mas o estudo que as descreve não se encontra indexado na Web of Science. Apenas em 2007 seria reportada a...
primeira estirpe iraniana – e asiática – vanA-positiva\(^{89,90}\) (TEH-2), cuja CIM era de 512 mg/L. Esta foi detectada num hospital em Teerão, em 2005, isolada de uma ferida cirúrgica num homem de 67 anos de idade, diabético, que faleceu durante o internamento\(^{89,90}\). Havia uma história extensa de antibioticoterapia, incluindo vancomicina\(^9\). Os autores também reportaram outra estirpe\(^9\), mas as culturas estavam contaminadas por enterococos\(^9\).

Em 2006 foram detectadas 3 outras estirpes, na cidade de Sari, Mazandaran\(^91\). A CIM mais alta reportada era de 32 mg/L e não foi pesquisado o gene vanA\(^36\). Em 2011 foi isolada uma outra estirpe em condições semelhantes, na cidade de Khorramabad, Lorestan\(^92\).

Anvari \textit{et al}\(^93\) reportaram a ocorrência de três estirpes MR-VRSA em Rasht, Guilan, em 2011, isoladas em exsudados purulentos (dois dos doentes com terapêutica recente com glicopéptidos). As CIMs eram de 128-256 mg/L, tendo estas estirpes sido positivas por PCR para os genes vanA e vanB (não foi especificado o subtipo).

Em 2012 Azimian \textit{et al}\(^66\) caracterizaram uma estirpe isolada em Masshad, Rasavi Khorazan, num doente de 26 anos que tinha estado internado durante 3 meses para tratamento de complicações de doença de Crohn, tendo recebido terapêutica imunossupressora e antibióticos, mas não vancomicina. Três meses após o internamento, no contexto de um quadro de dificuldade respiratória, que viria a ser a causa de morte do doente, isolou-se MRSA num aspirado brônquico. Inicialmente, pelos resultados do TSA pelo método de Kirby-Bauer, foi iniciada antibioticoterapia com vancomicina, mas a análise para epidemiologia molecular revelou que se tratava de uma estirpe VRSA vanA-positiva (\textit{Tabela 1}). Nunca se isolou \textit{Enterococcus faecalis} neste doente.

No mesmo ano, na cidade de Teerão, uma outra estirpe vanA-positiva foi reportada por Dezfulian \textit{et al}\(^97\) (\textit{Tabela 1}). Esta foi detectada num abscesso (infecção adquirida na comunidade) numa doente de 51 anos com história de DM.

Uma outra estirpe foi reportada em 2013 por Moravvej \textit{et al}\(^94\), isolada da mucosa nasal de uma enfermeira de 33 anos em Shiraz, Fars. O fenótipo foi confirmado por amplificação dos genes \textit{van} (os autores não especificam quais genes).

Askari \textit{et al}\(^36\) reviraram os casos de VRSA no Irão, incluindo artigos publicados e resumos de apresentações em congressos. Neste estudo reportam-se mais 9 estirpes, isoladas entre 2007 e 2011, cuja CIM foi determinada por métodos válidos, mas não houve acesso aos métodos detalhados relativos ao isolamento de cada uma destas estirpes. Uma destas foi positiva para o gene \textit{vanA}, duas foram negativas, e as restantes não foram testadas.

\textbf{ÍNDIA}

Desde o isolamento da primeira estirpe VRSA no mundo\(^12\) foram reportados vários casos na Índia. Os primeiros quatro, todos \textit{vanA}-negativos, foram reportados em 2006 por Tiwari e Sen\(^95\), e foram isolados
entre 2002 e 2005 em Vanarasi, Uttar Pradesh. Estas estirpes apresentavam CIMs de 16-64 mg/L; nos dois casos com CIM de 16 mg/L não havia história prévia de antibioticoterapia com vancomicina. Os outros dois, isolados em exsudados purulentos, tinham sido tratados com glicopéptidos durante mais de 20 dias, e acabaram por morrer.

O primeiro caso de uma estirpe MR-VRSA positiva para o gene vanA na Índia seria descrito em 2008 por Saha et al.\(^{65}\) (Tabela 1). O caso ocorreu num hospital em Calcutá, mas não existem dados clínicos disponíveis. Embora a CIM fosse de 64 mg/L, após indução verificou-se subida para 1024 mg/L. Esta, chamada STM2, foi a estirpe VRSA mais minuciosamente descrita a nível molecular na Índia.

Desde a publicação destes casos foram publicados vários outros, incluindo estirpes vanA-positivas cuja CIM foi determinada por um método validado, isoladas em Midnapore, Bengala Ocidental (8 estirpes cuja caracterização inicial\(^8\) não se encontra indexada na Web of Science); Chennai, Tamil Nadu (28 estirpes\(^9\); e no estado de Odisha (2 estirpes\(^9\). Quatro outras estirpes vanA-positivas foram reportadas por Goud et al.\(^{100}\) em 2011 na cidade de Bangalore, Karnatakat, mas por limitações práticas a susceptibilidade à vancomicina foi determinada pelo método de Kirby-Bauer e não pela CIM\(^{101}\).

Outros casos reportados incluem 22 estirpes num estudo multicêntrico de 2016\(^{102}\) em que não foi reportado o método de determinação da CIM nem pesquisado o gene vanA, bem como três casos de abcessos após injeções intramusculares (com evolução favorável após tratamento) em que as estirpes reportadas não foram caracterizadas\(^{103}\).

PAQUISTÃO

Três outras estirpes foram isoladas em 2009 na mesma cidade\(^{104}\). A CIM, determinada por ε-test, era de 16-32 mg/L. A estirpe com CIM mais elevada foi isolada de um exsudado purulento de um homem com 63 anos de idade. Os autores não reportam a investigação do mecanismo de resistência destas estirpes; tendo em conta a sobrestimação da verdadeira CIM pelo ε-test\(^{23,33}\), é provável que estas estirpes fossem na verdade VISA.

Em Lahore, Punjab, Liaqat et al.\(^{105}\) reportaram 5 estirpes VRSA. Os autores determinaram mas não reportaram a CIM, e não pesquisaram a presença do gene vanA.

EXTREMO ORIENTE

Em estudos sobre potenciais novos agentes terapêuticos contra MRSA e VRSA na Tailândia\(^{106}\) e na Coreia do Sul\(^{107}\) foi reportada a utilização de um total de seis estirpes VRSA que, no entanto, não foram caracteri-
zadas (com a excepção da CIM) nem os autores esclareceram as circunstâncias ou os métodos do seu isolamento.

Na China, na cidade de Cantão, Guangdong, foram encontradas estirpes VRSA, embora raras (os autores não especificam o número nem as caracterizam) a partir de 2011, coincidindo com a altura em que o método de Kirby-Bauer foi substituído pela determinação da CIM para todos os antimicrobianos testados\(^{108}\).

ÁFRICA

Em Tlemcen, Argélia, Rebiahi et al\(^{109}\) reportaram três estirpes VRSA (CIM de 16, 64 e 128 mg/L), isoladas em exsudados purulentos de doentes sem antibioticoterapia prévia. A CIM foi determinada após a estirpe ter sido rastreada como possível resistente pelo método de Kirby-Bauer, mas não se pesquisou o gene vanA.

Noutros países apenas existem estirpes reportadas da Etiópia\(^{110}\) e da Nigéria\(^{111}\), mas nunca identificadas por métodos válidos.

BRASIL

Em 2012 foi registado um caso de um homem de 35 anos, com história conhecida de mycosis fungoides, toxicodependência e DM, com infecções recorrentes da pele e tecidos moles, algumas tratadas empiricamente com vancomicina. As primeiras culturas positivas revelaram MR-VSSA. O doente foi tratado com vancomicina seguida de teicoplanina, mas a febre recorreu no dia após a suspensão da antibioticoterapia. As hemoculturas revelaram MR-VRSA \textit{vanA}-positivo. O doente foi então isolado e tratado com daptomicina, tendo-se verificado diminuição da febre\(^{63}\).

Nesta fase uma outra hemocultura foi positiva para 2 estirpes MSSA, uma delas MS-VSSA e a outra MS-VRSA. Com a excepção da presença do operão \textit{vanA} na estirpe MS-VRSA, ambas as estirpes mostraram ser muito semelhantes. Esta estirpe MS-VRSA não era um derivado de MR-VRSA\(^{64}\). Apesar dos esforços no tratamento da infecção, após a melhoria clínica inicial o doente acabou por falecer por complicações derivadas da doença de base\(^{63}\). As duas estirpes VRSA referidas estão descritas na Tabela 1.

EUROPA

A doente foi tratada com daptomicina, rifampicina e amicacina, em conjunto com tratamento agressivo da ferida. Ao fim de 3 semanas de tratamento as culturas foram negativas para VRSA, mas VRE apenas foi negativo às 5 semanas, após nova amputação ao nível do metatarso por evidência de osteomielite. A terapêutica foi modificada para piperacilina/tazobactam e colistina por persistência de *Pseudomonas aeruginosa*. Em Agosto a doente encontrava-se clinicamente estável e as culturas eram negativas, pelo que teve alta e a antibioticoterapia foi suspensa.

Na Europa apenas uma outra estirpe VRSA foi reportada. Na Alemanha, Huebner *et al* conduzindo um inquérito relativo ao isolamento de organismos multirresistentes a nível nacional, em 2014, reportaram um caso de colonização por MR-VRSA. Não foi encontrada a caracterização desta estirpe.

Fenótipo VanA em *Staphylococcus aureus*

Durante algum tempo após o aparecimento das primeiras estirpes VRSA as noções sobre o mecanismo de resistência total à vancomicina em *Staphylococcus aureus* eram extrapoladas dos conhecimentos prévios sobre o fenótipo VanA dos enterococos. Apenas em 2004 se havia de confirmar que o mecanismo de resistência é semelhante. Entre as estirpes VRSA encontradas no estudo actual positivas para genes *van*, com a exceção de três (e incerteza sobre mais uma) todas foram positivas apenas para o gene *vanA*. Estas três estirpes foram reportadas no Itália, apenas num estudo em que se reportou a presença do gene *vanB* (os autores não especificam o subtipo), sempre em conjunto com o gene *vanA*. A presença do gene *vanB* em *Staphylococcus aureus* não foi reportada em qualquer outro estudo validado pelos métodos usados neste trabalho; embora exista a possibilidade de haver um mecanismo local para a emergência de estirpes tipo-VanB, o mais provável é tratar-se de casos falsamente positivos. Este fenótipo, se verdadeiro, não foi estudado em detalhe. Por esse motivo, neste trabalho apenas é descrito o fenótipo VanA. A revisão detalhada dos outros fenótipos Van está fora do âmbito desta revisão e poderá ser encontrada na Referência 116.

MECANISMO DE RESISTÊNCIA

Pouco após os primeiros casos reportados de resistência total à vancomicina em *Enterococcus*, em 1988, multiplicaram-se os casos reportados e notou-se a indutibilidade deste fenótipo e a sua capacidade de transferência entre espécies diferentes de *Enterococcus*. A proteína cuja produção era induzida pela vancomicina foi chamada VanA e o gene que a codifica, *vanA*, foi sequenciado. Esta proteína tinha características de D-ala-D-ala ligase, mas, consistentemente com as previsões, o seu produto é um precursor depsipeptídico, com terminal D-ala-D-lac, cuja afinidade de ligação à vancomicina é 1000 vezes inferior à do precursor pentapeptídico normal, com terminal D-ala-D-ala.

O gene *vanA* está contido no transposão Tn1546, que é transportado pelo elemento conjugável tipo-Inc18 e tem uma dimensão de 10,8 kb. Este transposação contém nove genes: *vanA*, *vanS*, *vanR*, *vanH*, *vanX*, *orf1*,...
orf2, vanY e vanZ126. Os primeiros cinco são suficientes para a síntese de peptidoglicano na presença de vancomicina127. A função da proteína VanZ é desconhecida17, mas as outras oito proteínas têm funções bem conhecidas na expressão do fenótipo VanA:

- **Hidrólise dos terminais D-ala-D-ala.** A dipeptidase VanX hidrolisa D-ala-D-ala, prevenindo a síntese dos precursores pentapeptídicos do peptidoglicano128. A carboxipeptidase VanY completa a atividade de VanX ao hidrolisar os precursores pentapeptídicos normais129.

- **Incorporação dos terminais D-lac.** A D-hidroxiácido desidrogenase VanH reduz o piruvato a D-lactato122, que é depois incorporado no peptidoglicano pela ligase VanA125.

- **Regulação da expressão do operão.** A expressão de resistência à vancomicina é induzida pelos glicopéptidos127 e inibida pela sua ausência130. Na presença de glicopéptidos é induzida a fosforilação de VanS, que por sua vez fosforila (activa) VanR. A síntese das enzimas VanA, VanH, VanX e VanY é estimulada ao nível da transcrição por VanR na sua forma fosforilada127. Na ausência de indução VanS estimula a desfosforilação de VanR, regulando negativamente a expressão dos genes de resistência130. Contudo, a expressão da resistência mantém-se num nível basal baixo mesmo na ausência de pressão com vancomicina31.

- **Mobilização do elemento Tn1546,** mediada pela transposase ORF1 e pela resolvase ORF2126.

PRECURSORES DE PEPTIDOGLICANO MODIFICADOS

Uma estirpe VRSA apresenta um conjunto de precursores do peptidoglicano distinto de outras estirpes, mas semelhante ao dos enterococos tipo-VanA. Na ausência de pressão com vancomicina existem vários componentes em comum, incluindo os precursores pentapeptídicos com terminal D-ala-D-ala, que compõem mais de 80% do total de material precursor. Contudo, mesmo nestas condições existe uma minoria de precursores depsipeptídicos, com terminal D-ala-D-lac, semelhantes aos descritos nos enterococos. Quando estas estirpes são pressionadas com vancomicina o conjunto de precursores muda drasticamente, verificando-se a substituição dos precursores pentapeptídicos pelos precursores depsipeptídicos e por um precursor tetrapeptídico com terminal D-lys-D-ala113,115. A teicoplanina também tem actividade indutora, mas mais fraca que a vancomicina115.

ANTAGONISMO ENTRE RESISTÊNCIA À VANCOMICINA E METICILINA

Apesar de muitas estirpes VRSA serem também MRSA, o fenótipo VanA é independente da resistência à meticilina113. No entanto, a adição de oxacilina pode diminuir a CIM da vancomicina para a gama da susceptibilidade113. A PBP2 de *Staphylococcus aureus* é essencial para a expressão da resistência à vancomicina, uma vez que a PBP2a é incapaz de utilizar os precursores depsipeptídicos como substratos para a reacção de transpeptidação114, enquanto a PBP2 utiliza tanto os precursores depsipeptídicos como os penta-
peptídicos. Perante a inibição da PBP2 por um fármaco β-lactâmico em simultâneo com a substituição dos terminais pentapeptídicos pelos depsipeptídicos, induzida pela vancomicina, a PBP2a é então incapaz de construir uma camada de peptidoglicano funcional com os terminais depsipeptídicos disponíveis.

CUSTO BIOLÓGICO DA EXPRESSÃO DO OPERÃO VanA
A expressão basal do operão vanA não coloca uma desvantagem significativa em VRSA, mas confere-lhe uma vantagem importante na presença de vancomicina, apesar da diminuição do ritmo de crescimento nessas condições. Apesar de tudo, as estirpes MR-VSSA são capazes de se sobrepor às estirpes MR-VRSA num meio não-selectivo; a expressão basal do operão vanA pode justificar esta desvantagem ligeira. Parece portanto existir uma tendência para a eliminação gradual das estirpes VRSA mesmo na ausência de pressão com vancomicina.

ESTIRPES VRSA VANCOMICINA-DEPENDENTES
Por motivos desconhecidos, uma proporção significativa de estirpes VRSA revelou ser vancomicina-dependente. As estirpes VRS7, VRS9 e VRS11a demonstraram uma dependência parcial in vitro de glicopéptidos para o seu crescimento, que era lento em placas sem vancomicina e normal nas placas de gelose de rastreio. Nestas estirpes predominam precursores depsipeptídicos do peptidoglicano mesmo na ausência de vancomicina, o que não se verifica em estirpes não-vancomicina-dependentes. Isto é resultado de uma mutação no gene ddl que diminuiu drasticamente a actividade da D-ala-D-ala ligase. O conteúdo do peptidoglicano é então determinado principalmente pela actividade da ligase VanA, que é induzida na presença de vancomicina, sendo portanto nessas condições que a síntese de peptidoglicano é mais rápida. No caso de VRS11b, um derivado de VRS11a, o crescimento era indiferente na presença e na ausência de vancomicina no meio de cultura. Este derivado era uma variante constitutivamente resistente à vancomicina, provavelmente resultando de uma mutação no gene vanR. Neste caso, a D-ala-D-ala ligase disfuncional foi compensada pela ligase VanA constitutivamente activa, e portanto a vancomicina deixou de ser um nutriente importante para o crescimento desta estirpe.

A análise dos precursores citoplasmáticos do peptidoglicano da estirpe MS-VRSA brasileira na ausência de indução revelou uma proporção baixa de precursores depsipeptídicos, o que significa que muito provavelmente esta não seria uma estirpe MS-VRSA mecA-positiva, onde seria de esperar uma proporção muito superior destes precursores na ausência de indução.

Reforçando os achados de Severin et al, estas estirpes vancomicina-dependentes, embora portadoras de um gene mecA íntegro e funcional, eram sensíveis aos β-lactâmicos. Esta sensibilidade deve-se ao funcionamento unilateral da ligase VanA, simulando uma situação de pressão com vancomicina: a PBP2a é incapaz de utilizar a maioria dos precursores e por isso a inibição da PBP2 é suficiente para inibir o crescimento destas estirpes. Desta forma, estas estirpes podem, conceptualmente, ser tratadas com um β-
lactâmico, apesar da produção de um gene *mecA* íntegro e funcional. Por outro lado, a ocorrência destas estirpes, com exigências nutricionais tão específicas, em números relativamente tão elevados sugere a possibilidade de existirem outras que não são detectadas pelos métodos convencionais usados por rotina no Laboratório de Microbiologia Clínica.

VARIABILIDADE DA EXPRESSÃO DE RESISTÊNCIA

Duas das estirpes americanas, VRS2 e VRS3a, as únicas LLR-VRSA americanas, diferem das outras na medida em que o seu grau de resistência à vancomicina é significativamente inferior em relação ao das outras estirpes. Este achado motivou vários estudos para explicar esta diferença, tendo sido levantandas várias hipóteses. A diferença na expressão do operão *vanA* foi a primeira, mas verificou-se que não existem diferenças significativas a este nível entre as estirpes HLR-VRSA e LLR-VRSA e que, entre as duas estirpes LLR-VRSA, com níveis semelhantes de resistência à vancomicina, existia uma quantidade menor de terminais D-ala-D-lac em VRS3a.

Outra hipótese seria a existência de um elemento Tn1546 modificado nas estirpes LLR-VRSA, enquanto as estirpes HLR-VRSA do Michigan continham um elemento prototípico. Contudo, as estirpes HLR VRS1, a portuguesa e muito provavelmente também VRS3b também eram portadoras de elementos Tn1546 modificados.

Mais tarde, Qureshi *et al.* verificaram que a deleção do sistema VraTSR, implicado na resposta à pressão na parede celular gerada pelos antibióticos que nela actuam, podia diminuir significativamente a resistência à vancomicina e a indução do operão *vanA*, bem como a resistência à oxacilina. Este grupo apenas estudou uma única estirpe, VRS1: embora seja possível que este sistema contribua para a variabilidade da expressão de resistência à vancomicina em estirpes clínicas, é incerto se isso de facto se verifica.

A explicação mais aceite actualmente é a instabilidade da expressão da resistência à vancomicina nas estirpes LLR-VRSA, tendo-se verificado a perda fácil da resistência após subcultura em meio não-selectivo, com perda do operão *vanA*, o que não ocorria nas estirpes HLR-VRSA. Périchon e Courvalin sugeriram que o fenótipo LLR se deve a uma taxa elevada de perda espontânea do operão *vanA* devida à provável presença de menos plasmídeos contendo o operão *vanA* nas estirpes LLR-VRSA, que são significativamente maiores que os das estirpes HLR-VRSA e portanto podem replicar-se com menor eficiência. Isto parece causar um atraso significativo na indução de resistência.

Este mecanismo pode explicar o isolamento de estirpes VISA *vanA*-positivas. A existência do gene *vanA* em estirpes que não o expressam totalmente sugere que a transferência de genes de resistência de *Enterococcus* spp. para *Staphylococcus aureus* pode ser mais frequente do que aparenta, e depois uma expressão reduzida destes genes leva a um fenótipo de resistência intermédia ou susceptibilidade que pode passar despercebido. O estudo detalhado do operão *vanA* destas estirpes (incluindo a sua localização), que nunca foi realizado, permitiria compreender o porquê desta expressão diminuída. Embora seja possível que
estas estirpes fossem verdadeiros VISA com um operão vanA inactivo (por exemplo, devido a mutações genéticas condicionando disfunção) ou falsos positivos, também é possível que estas estirpes fossem verdadeiras tipo-VanA, cuja CIM seria gerada pela replicação ineficaz do plasmídeo contendo o operão vanA, mais ainda que nas estirpes VRS2 e VRS3a, embora mantendo-se uma quantidade suficiente de células positivas para um resultado positivo por PCR. O mecanismo causador do nível e estabilidade da resistência à vancomicina em VRS3b não foi esclarecido. Mesmo considerando-se que esta estirpe é muito semelhante a VRS3a, tendo em conta as conclusões de Périchon e Courvalin é pouco provável que sejam geneticamente iguais. É provável que tenha havido passagem do operão vanA para um plasmídeo de menores dimensões, com replicação mais eficiente. A comparação genética destas duas estirpes permitiria muito provavelmente compreender melhor as diferenças na expressão da resistência à vancomicina em estirpes HLR e LLR.

ESTIRPES VRSA NÃO-TIPO-VanA

Parece haver alguma sobreposição na CIM entre estirpes com fenótipo VISA e VRSA. Por um lado, em algumas estirpes VISA já foi observada a presença do operão vanA. Por outro lado, estirpes vanA-negativas já foram observadas com níveis de resistência classificáveis como resistência total. Já foi observada em laboratório a emergência de estirpes VRSA a partir de estirpes VSSA selecionadas com vancomicina, tendo-se então verificado um aumento da espessura da parede celular nestas estirpes. As estirpes clínicas reportadas por Tiwari e Sen não apresentavam CIM para a vancomicina superiores a 64 mg/L, em contraste com as CIM em geral muito superiores observadas em Staphylococcus aureus tipo-VanA, mas em condições de laboratório é possível elevar a CIM além destes valores. Embora não seja de excluir um mecanismo diferente de resistência à vancomicina nestas estirpes clínicas, é provável que correspondam a um fenótipo VISA com uma CIM na gama da resistência total. Nesse sentido, é interessante notar que as estirpes VRSA reportadas por Tiwari e Sen com CIM mais elevada tinham recebido antibioticoterapia prévia com vancomicina. Não foi realizada microscopia electrónica para documentar alterações na parede celular dessas estirpes. Uma outra possibilidade é a contaminação das amostras por Enterococcus spp., que pela possível geração de falsos positivos deve ser sempre excluída perante o isolamento de VRSA.

Transferência de Genes de Resistência de Enterococcus para Staphylococcus aureus

A relevância clínica dos achados de Noble et al permaneceu incerta durante alguns anos. Colocou-se inclusivamente a possibilidade de a transferência do gene vanA não ocorrer na natureza. Os receios, contudo, tornaram-se realidade quando a primeira estirpe VRSA tipo-VanA foi isolada, em 2002.
MECANISMOS DE INTEGRAÇÃO DOS GENES DE RESISTÊNCIA

O estudo genético de cada estirpe VRSA americana demonstrou que estas estirpes não eram relacionadas entre si e que o grau de semelhança era independente do local e data de isolamento, de onde se conclui que cada uma foi gerada por eventos genéticos independentes59,72,75,140. Cada presumível Enterococcus faecalis dador identificado demonstrou um padrão de PFGE único, tendo-se excluído a hipótese de uma estirpe única dadora comum72. Consistentemente com um modelo de aquisição independente, as sequências Tn\textsubscript{1546} demonstram segregação regional75, de acordo com as variações regionais nos tipos de elementos Tn\textsubscript{1546} presentes nas estirpes VRE tipo-Inc18 positivos77. De facto, o estudo epidemiológico das estirpes VRSA americanas revelou que estas apresentam origens muito diferentes, cuja diferenciação terá começado antes do isolamento das primeiras estirpes MRSA60,75.

A primeira estirpe VRSA foi isolada em simultâneo com uma estirpe VR-Enterococcus faecalis12. O plasmídeo tipo-Inc18 portador do elemento Tn\textsubscript{1546}, presente na estirpe VRE, não era relacionado com o plasmídeo que continha o gene vanA na estirpe VRSA69,70, mas o elemento Tn\textsubscript{1546} presente na estirpe VRSA era idêntico ao elemento Tn\textsubscript{1546} prototípico71 e a sequência do gene vanA era idêntica à do co-isolado VR-Enterococcus faecalis35. Contudo, o plasmídeo existente na estirpe VRSA, tipo-pSK41, era muito semelhante ao plasmídeo existente numa estirpe MRSA isolada do mesmo doente, embora fosse significativamente maior69,70. O mais provável é que o transposão Tn\textsubscript{1546} tenha sido transferido por conjugação e depois incorporado num plasmídeo previamente existente na estirpe MRSA, tendo o plasmídeo enterocócico sido eliminado69,70. Nos casos americanos 6, 8 e 9 parecem ter ocorrido sequências de eventos semelhantes72,75.

Uma porção significativa do transposão Tn\textsubscript{1546} estava presente na segunda estirpe VRSA31, embora não se encontrasse completa: o gene orf1 e parte do gene orf2 tinham sido eliminados31,71. Além disso foram identificadas duas sequências de inserção71. No entanto, a localização do transposão era instável: derivados desta estirpe continham o gene vanA em posições diferentes, e não só a resistência à vancomicina podia aumentar para uma CIM de 2048 mg/L com indução mas também o gene vanA podia ser perdido após passagens em meios não-selectivos, com consequente perda do fenótipo de resistência73,87. Este gene encontrava-se num plasmídeo quimérico de origem predominantemente enterocócica75, de grandes dimensões (120 kb)31.

Um transposão Tn\textsubscript{1546} modificado, de forma aproximadamente semelhante ao da segunda estirpe VRSA, foi encontrado em VRS3a. Neste caso, o plasmídeo, com cerca de 100 kb, foi transferido e mantido sem integração em qualquer cromossoma ou plasmídeo estafilocócico, pelo que apenas um evento genético foi necessário para a expressão de resistência. Um outro achado curioso neste caso é que a espécie dadora mais provável era Enterococcus faecium e não Enterococcus faecalis, embora seja possível que uma estirpe de Enterococcus faecalis que contivesse estes genes estivesse também presente, tivesse transferido um plasmídeo semelhante, e não tivesse sido detectada38. Também no caso português e nos casos americanos 4,
5, 7 e 10, e provavelmente também o 13°, se verificou que o plasmídeo enterocócico se manteve no receptor estafilocócico, mas, com a exceção da estirpe portuguesa (a sequência de DE-13 não foi reportada), as sequências do transposão Tn1546 eram semelhantes à do elemento prototípico 40,60,72,75,80. A estirpe VRS3b foi isolada do mesmo doente e do mesmo local anatômico de VRS3a. Esta estirpe apresentava uma resistência mais estável e de nível mais elevado que VRS3a 8, mas de resto parece ser em tudo semelhante a VRS3a 76, embora não tenham sido esclarecidos os motivos destas diferenças.

As estirpes VRS11, isoladas no estado de Delaware, também apresentavam sequências Tn1546 diferentes do protótipo, contendo sequências de inserção 44,75 de forma aproximadamente semelhante à da estirpe portuguesa 80. Nas estirpes VRS11 o plasmídeo que continha o operão vanA era um plasmídeo quimérico composto pela fusão de um plasmídeo estafilocócico com um plasmídeo enterocócico 75. As sequências Tn1546 e o perfil plasmídico das restantes estirpes encontradas no estado de Delaware não foram publicados.

Na estirpe MR-VRSA brasileira 63 também foi encontrado um transposão Tn1546 modificado, com algumas diferenças em relação às estirpes americanas, mas mantendo a deleção de orf1 e parte de orf2 e uma sequência de inserção. A jusante de vanZ existia uma deleção e uma sequência de inserção com genes de resolvase e transposase enterocócicos. Tendo em conta a semelhança entre o plasmídeo vanA-positivo desta estirpe e o da estirpe MS-VRSA co-isolada, é provável que o elemento Tn1546 da estirpe MS-VRSA 64 seja muito semelhante ao da estirpe MR-VRSA. A estirpe paquistanesa 68 também tinha um elemento Tn1546 modificado localizado num plasmídeo, mantendo algumas características em comum com as restantes estirpes, como a deleção de orf1 e a presença de uma sequência de inserção. Não foi possível aceder à caracterização completa desta estirpe.

Entre as várias estirpes iranianas, por sua vez, em apenas duas 66,67 se pesquisou a sequência do gene vanA, e em ambas esta era prototípica. Em apenas uma se descreveu o perfil plasmídico 66 mas não foi esclarecida a origem do plasmídeo portador do operão vanA. Na outra estirpe o elemento Tn1546 foi estudado pela amplificação dos genes individuais, e não pela sequência: os autores verificaram que a amplificação dos genes vanR e vanS originou produtos com o tamanho esperado, mas não conseguiram amplificar os genes vanH e vanX, o que se pode dever a disrupções destas regiões por sequências de inserção 67. Na estirpe indiana STM2, a única estirpe indiana descrita com este pormenor, também se encontrou um elemento Tn1546 prototípico, num plasmídeo cuja origem não foi esclarecida 65.

Em resumo, até à data foram sugeridas três vias possíveis para a emergência de estirpes VRSA 40:

- Integração do elemento Tn1546 num plasmídeo estafilocócico, com a perda do plasmídeo enterocócico original à medida que o plasmídeo quimérico se replica 70.
- Integração do elemento Tn1546 num plasmídeo quimérico contendo sequências estafilocócicas e enterocócicas de vários plasmídeos 31.
- Replicação do plasmídeo enterocócico, contendo o operão vanA, no estafilococo recipiente 38.
PLASMÍDEOS ENTEROCÓCICOS TIPO-Inc18

Um facto que intrigou vários investigadores durante alguns anos foi a ocorrência preferencial das estirpes VRSA no estado do Michigan, nos EUA, demonstrando alguma limitação geográfica\(^{13,40}\). Colocou-se a hipótese de isso se dever a características populacionais locais, mas não foram encontradas diferenças que justificassem a concentração das estirpes neste estado\(^ {13} \).

Por razões desconhecidas, os plasmídeos enterocócicos mais frequentemente associados à transferência do operão \(vanA\) são os tipo-Inc18, mas outros, cuja natureza ainda não é clara, também se podem associar\(^ {72,141}\). Estes plasmídeos são transmissíveis entre células de \(Enterococcus faecalis\), incluindo na natureza, entre estirpes diferentes\(^ {77}\), e facilitam a transferência dos genes de resistência à vancomicina de \(Enterococcus\) spp. para \(Staphylococcus aureus\)\(^ {142}\).

Na maioria dos casos americanos (10/14) foi identificado um plasmídeo tipo-Inc18 em pelo menos uma estirpe VRSA ou VRE. No caso português tal plasmídeo foi encontrado em ambos\(^ {80}\). Estes resultados sugerem que estes plasmídeos são particularmente propensos à transferência de uma estirpe VRE para uma estirpe de \(Staphylococcus aureus\)\(^ {72,77}\). Zhu et al\(^ {77}\) verificaram que a prevalência dos plasmídeos tipo-Inc18 contendo o operão \(vanA\) em enterococos era significativamente superior no Michigan, mas não foi possível averiguar a existência de focos noutros estados. Nenhum outro grupo estudou esta diferença, mas outros grupos apresentaram resultados aproximadamente semelhantes aos de Zhu et al no estado do Michigan\(^ {143,144}\).

Além disso, estes plasmídeos parecem ocorrer mais frequentemente em VR-\(Enterococcus faecalis\) e outras espécies relativamente a VR-\(Enterococcus faecium\)\(^ {77,143,144}\), tendo a prevalência máxima encontrada sido de 12,5% para \(Enterococcus faecalis\), de 1,0% para \(Enterococcus faecium\) e de 13,0% para outras espécies\(^ {77}\). Desconhecem-se as razões destas diferenças, assim como se desconhece se a espécie portadora do plasmídeo é importante para a transferência do operão \(vanA\).

Albrecht et al\(^ {144}\) detectaram ainda uma diminuição significativa da prevalência destes plasmídeos no Michigan a partir de 2010. Em 2011, Tosh et al\(^ {145}\), provavelmente em acordo com esses resultados, não detectaram qualquer estirpe VRE tipo-Inc18 positiva. Não são conhecidas as razões para esta diminuição, mas pode refletir alterações devidas a flutuação natural ou intervenções com o objectivo de reduzir a colonização nosocomial por VRE\(^ {144}\). O facto é que, após ter sido reportada a oitava estirpe VRSA no estado do Michigan em 2009, nunca mais nenhuma outra estirpe VRSA foi reportada neste estado.

PLASMÍDEOS ESTAFILOCÓCICOS TIPO-pSK41

Zhu et al\(^ {142}\) verificaram que a existência de um plasmídeo tipo-pSK41 em MRSA facilitava a recepção do plasmídeo tipo-Inc18 de VRE. No entanto, não é essencial que estes plasmídeos sejam transportados pela estirpe receptora: a sua presença extracelular facilita também a recepção dos plasmídeos tipo-Inc18 enterocócicos, embora com taxas de transferência mais baixas.
Foi encontrado um plasmídeo tipo-pSK41 em várias estirpes VRSA clínicas60,69,70,142. Contudo, também em várias outras não se encontrou qualquer plasmídeo deste tipo60,142: ou estas estirpes VRSA perderam os plasmídeos eventualmente ou nunca os possuíram. Nalguns destes casos foi encontrada uma estirpe MRSA tipo-pSK41 positiva, presumível precursora ou não60, sugerindo possível mediação pela presença extracelular. Por outro lado, em seis casos não foram encontrados estes plasmídeos em qualquer bactéria isolada60. O mesmo aconteceu com o português80. É desconhecido, contudo, o papel que outras bactérias tipo-pSK41 positivas que não tenham sido encontradas possam ter desempenhado na transferência da resistência nesses casos142.

Estes plasmídeos parecem ser relativamente raros em \textit{Staphylococcus aureus}, com prevalências aparentemente não superiores a 10\%144,145,146, e parecem ser mais comuns nas estirpes CC8144, principalmente naquelas com padrões de resistência mais incomuns146. Estes plasmídeos ocorrem em linhagens diferentes de \textit{Staphylococcus aureus}, meticilina-resistentes e meticilina-sensíveis, o que significa que existe o potencial de emergência de VRSA em praticamente qualquer estirpe de \textit{Staphylococcus aureus}144,145. Ao contrário do que foi encontrado com os plasmídeos tipo-Inc18 enterocócicos, nos plasmídeos tipo-pSK41 estafilocócicos não foi encontrada variação significativa ao longo do tempo144.

CO-COLONIZAÇÃO COM ORGANISMOS PRECURSORES DE VRSA

Vários grupos pesquisaram a co-colonização com MRSA e VRE para conhecer a prevalência ou para estudar factores de risco para tal co-colonização. A utilização de métodos semelhantes (que não ocorreu nestes estudos) é extremamente importante para a obtenção de resultados válidos e comparáveis. Idealmente, estes estudos devem ser conduzidos pela colheita de amostras de rastreio para colonização, que permite detectar doentes que nunca seriam detectados se apenas fossem usadas amostras clínicas147. As taxas de co-colonização encontradas foram muito variáveis conforme os métodos utilizados, variando entre 2,7\% e 62\%, mas é unânime que uma proporção significativa da população se encontrar co-colonizada143,147-152.

Os factores de risco mais unanimemente encontrados para a co-colonização por VRE e MRSA incluem: idade mais avançada147,150, sexo masculino147,152, internamento em unidade de cuidados intensivos no internamento actual147,152, antibioticoterapia recente143,147 e isolamento de \textit{Enterococcus faecalis}143. A co-colonização parece ser mais comum em amostras de pele e feridas143,152.

Tendo em conta as circunstâncias óptimas para a emergência de VRSA, o potencial para tal emergência poderá ser melhor discernido se apenas forem procurados doentes co-colonizados por VR-\textit{Enterococcus faecalis} tipo-Inc18 positivo e MRSA tipo-pSK41 positivo. No estudo de Reyes \textit{et al}143, todos os doentes com estirpes VRE tipo-Inc18 positivas sofriam de doenças crônicas, como DM, DRC em hemodiálise ou osteomielite. Relativamente a MRSA tipo-pSK41 positivo, os factores de risco encontrados para a colonização incluem a administração de qualquer antibioticoterapia, incluindo vancomicina144, e a presença de feridas crônicas durante pelo menos 2 anos (não necessariamente a mesma ferida)145. Nos dois estudos que
pesquisaram este tipo específico de co-colonização144,145, nenhum encontrou um único doente co-colonizado, sugerindo que a co-colonização com organismos potencialmente precursores de VRSA é incomum, mesmo em indivíduos com maior risco de tal colonização.

RECEPÇÃO DE MATERIAL GENÉTICO POR *STAPHYLOCOCCUS AUREUS*

Um achado interessante no estudo de VRSA é a aparente maior propensão das estirpes CC5 para receber genes de resistência à vancomicina de *Enterococcus* spp.75, apesar de os plasmídeos tipo-pSK41 estarem presentes em várias outras linhagens144,145,146. Pareceria provável que as estirpes CC5 possuíssem alguma característica genética própria que as predispusesse a tal recepção.

A manipulação genética de *Staphylococcus aureus* é reconhecidamente difícil. A estirpe RN4220, capaz de receber plasmídeos de *Escherichia coli*, foi durante muito tempo a única passível de ser usada para esse fim, mas só em 2006 se começou a compreender os mecanismos subjacentes. Em 2006, Waldron e Lindsay153 descreveram um sistema de restrição-modificação tipo I, até então desconhecido, a que chamaram Sau1. Estirpes com defeitos neste sistema, como RN4220, revelaram uma maior propensão para recepção de material genético exógeno. Ao contrário de outros sistemas previamente descritos em *Staphylococcus aureus*, este tem localização cromossômica e parece ser partilhado por todas as estirpes. Os genes responsáveis pelo reconhecimento de sequências específicas (*hsdS*) são muito variáveis, tanto dentro da mesma estirpe como em linhagens diferentes, mas existem padrões de genes *hsdS* muito conservados dentro das mesmas linhagens de *Staphylococcus aureus*, que parecem ser responsáveis pela dificuldade na transmissão de material genético entre linhagens diferentes de *Staphylococcus aureus*. Isto parece resultar na elevada clonalidade desta espécie, e por isso os autores prevêem que é pouco provável que o operão *vanA* seja disseminado horizontalmente entre estirpes de *Staphylococcus aureus*.

Waldron e Lindsay153 notaram que estirpes com defeitos neste sistema apresentam maior capacidade de recepção de genes de resistência à vancomicina. Contudo, apesar de vários grupos terem conseguido transferir a resistência à vancomicina das estirpes VRSA clínicas para estirpes VSSA42,63,65,68-70,113, a maioria das estirpes VRSA clínicas mantinha este sistema intacto75,154.

Mais tarde, Corvaglia *et al.*155 descreveram um sistema de restrição-modificação tipo III, que codifica uma metilase responsável pela especificidade da sequência e uma endonuclease responsável pela clivagem do DNA não-metilado. Deficiências neste sistema (encontradas também em RN4220) foram associadas a um fenótipo semelhante ao descrito para Sau1. Verificou-se que algumas estirpes CC5 japonesas também possuíam mutações neste sistema e que a sua propensão para receber material genético de *Escherichia coli* era semelhante à de RN4220, mas verificou-se que a maioria das estirpes VRSA clínicas também mantém este sistema intacto75.

Embora possa parecer provável que o próprio formato do sistema Sau1 nas estirpes CC5 possa favorecer a recepção do elemento Tn1546, o motivo para a maior propensão para recepção deste elemento nas estirpes CC5 permanece por esclarecer.
EMERGÊNCIA DE VRSA NO MEIO AMBIENTE

Alguns grupos também estudaram a existência de estirpes VRSA no meio ambiente. Na região de Bengala Ocidental, Índia, Mandal et al.156 reportaram 15% de estirpes VRSA \textit{vanA}-positivas em efluentes hospitalares, enquanto Bhattacharyya et al.157 reportaram 2,55% de estirpes VRSA (todas \textit{vanA}-negativas) em amostras de leite pela medição da CIM (não houve acesso aos métodos). Na Turquia, Icgen158 reportou a existência de VRSA no rio Kızılırmak, nas proximidades da cidade de Kırıkkale. Duas estirpes foram reportadas como MR-VRSA, com CIM para a vancomicina de 128 mg/L, ambas positivas para o gene \textit{vanA}. Também foram encontradas estirpes VR-\textit{Enterococcus faecalis}, cujo gene \textit{vanA} demonstrava uma semelhança elevada em relação ao das estirpes VRSA. Este achado sugere fortemente a possibilidade da emergência de VRSA no ambiente, mas é importante referir que Sung e Lindsay154 demonstraram que a maioria das estirpes que mais facilmente recebem elementos de resistência à vancomicina ocorre em animais e não em humanos, pelo que a importância epidemiológica destes achados é questionável. Apesar de tudo, também não é de excluir que nestes locais existam estirpes que possam ocorrer em humanos e existam condições favoráveis à transferência da resistência, mas tal possibilidade nunca foi esclarecida.

Tratamento da Infecção por VRSA

Uma vez que as estirpes MR-VRSA são essencialmente estirpes MRSA que adquiriram um operão que confere resistência aos glicopéptidos, será de esperar que os fármacos não-glicopeptídicos activos contra MRSA sejam também activos contra VRSA. As estirpes MS-VRSA podem ser tratadas adequadamente com uma isoxazolilpenicilina.

Casos de infecção por VRSA são ainda muito raros, portanto a experiência clínica actual apenas dificilmente fornece orientações precisas para o tratamento adequado destas estirpes. Contudo, os dados até agora obtidos podem permitir guiar a terapêutica empírica até que sejam realizados outros testes de susceptibilidade140.

A estratégia sugerida por Gould7 aceita a utilização de vancomicina ou co-trimoxazol num doente com factores de risco ou cultura positiva para MRSA quando a infecção não é grave, devendo-se atingir rapidamente concentrações terapêuticas. Perante uma infecção grave os glicopéptidos poderão ser uma alternativa inadequada; pode-se adicionar uma penicilina para cobrir MSSA, mas também poderá ser usada a daptomicina em monoterapia. Perante o isolamento de VRSA a daptomicina pode ser considerada primeira linha de tratamento, com co-trimoxazol, linezolida e ceftarolina como alternativas, mas a daptomicina não é apropriada como primeira linha contra estirpes VISA. Quando indicado, também se deverá recorrer à drenagem de abscessos e desbridamento de tecidos infectados.

LIPOPÉPTIDOS

A daptomicina é um agente não-nefrotóxico aproximadamente tão eficaz como as penicilinas contra estirpes MSSA. Mantém actividade contra a maioria das estirpes VRSA, pelo que constitui a primeira opção quando
se verifica uma má resposta terapêutica a um glicopéptido. De facto, todas as estirpes testadas eram susceptíveis à daptomicina. É possível que a combinação com gentamicina produza um efeito sinérgico com benefício terapêutico.

OXAZOLIDINONAS
A linezolida, um antimicrobiano bacteriostático, apresenta uma evidência cada vez maior da sua eficácia. A resistência é possível, mas permanece um achado raro. De facto, no Mundo Ocidental todas as estirpes VRSA testadas eram susceptíveis à linezolida. Mesmo noutras regiões, quando a linezolida foi testada contra estas estirpes, em muitos casos foi reportada sensibilidade. Foram reportadas duas estirpes resistentes na Índia e uma no Irão.

CEFALOSPORINAS ANTI-MRSA
As cefalosporinas anti-MRSA têm actividade contra a PBP2a pela sua acetilação irreversível, gerando rapidamente uma alteração na sua conformação que permite o acesso ao local activo da enzima. Por esse motivo, estas cefalosporinas são actualmente os únicos β-lactâmicos activos contra as estirpes MRSA, e mantêm actividade bactericida contra MR-VRSA. A emergência de estirpes resistentes parece ser mais comum com o ceftobiprol que com a ceftarolina.

LIPOGLICOPÉPTIDOS
Os lipoglicopéptidos incluem a telavancina, a dalbavancina e a oritavancina. O uso da telavancina é limitado pela sua nefrotoxicidade. Um mecanismo duplo de inibição da síntese de peptidoglicano e disrupção da integridade da membrana celular pode diminuir o desenvolvimento de resistências.

Apenas a telavancina e a oritavancina foram testadas contra VRSA. Ambas demonstraram actividade bactericida potente, apesar de uma possível diminuição resultante das modificações na parede celular, mas mesmo assim comparável à actividade de outros fármacos eficazes contra MRSA. A combinação com gentamicina ou linezolida parece ser sinérgica e bactericida. Os lipoglicopéptidos podem portanto ser uma boa opção no tratamento de infeções por VRSA, mas ainda é necessária experiência clínica que confirme esta possibilidade.

TETRACICLINAS E GLICILCICLINAS
As tetraciclinas, um grupo de antimicrobianos bacteriostáticos que inclui a minociclina e a tetraciclina, também revelaram ser activas contra várias estirpes. Todas as estirpes ocidentais testadas eram susceptíveis à minociclina. A tetraciclina também revelou ser activa contra pelo menos cinco estirpes ocidentais, mas foi reportada resistência em dois casos, não tendo sido testada a susceptibilidade ou resistência de outras estirpes. A tetraciclina também revelou ser eficaz contra algumas estirpes.
asiáticas90,95, mas também foram reportadas algumas resistentes66,104. Fora dos EUA apenas foi reportada uma estirpe sensível à minociclina66, mas não foi reportada nenhuma estirpe resistente.

A tigeciclina, uma glicilciclina, é um fármaco bacteriostático geralmente reservado como última linha no tratamento de infecções por organismos multirresistentes, e mantém actividade contra muitas estirpes VRSA7. Todas as estirpes ocidentais testadas eram susceptíveis59,60,62,87,165, mas numa também se reportou resistência140. Duas estirpes indianas foram reportadas como resistentes99.

QUINUPRISTINA/DALFOPRISTINA

A quinupristina/dalfopristina é uma combinação bactericida, mas menos usada por questões de toxicidade7. Apresenta um mecanismo de acção duplo, que diminui a taxa de resistências173. Esta combinação revelou ser activa contra todas as estirpes VRSA ocidentais testadas5,12,13,31,32,35,58,59,62,159,160. Foi reportada uma estirpe resistente no Irão94.

OUTROS FÁRMACOS

Outros antimicrobianos mais antigos com actividade contra MSSA e MRSA, como o co-trimoxazol, o cloranfenicol e o ácido fusídico, também são muito frequentemente activos contra estirpes VRSA. Estes fármacos são bacteriostáticos7. De facto, o co-trimoxazol revelou ser activo contra a maioria das estirpes VRSA ocidentais5,12,31,32,35,58,60,62,87,140, mas algumas foram reportadas como resistentes5,59,63. Na Ásia algumas estirpes foram reportadas como susceptíveis66,95, mas também foram reportadas estirpes resistentes65,67.

O cloranfenicol, cujo uso é limitado pela sua toxicidade, também revelou ser activo contra todas as estirpes VRSA ocidentais testadas12,31,32,35,38,60,62,63. Na Ásia foi reportada uma estirpe resistente65.

A rifampicina, bactericida, também é muito frequentemente activa. De facto, entre todas as estirpes VRSA ocidentais, apenas VRS13 foi reportada como resistente à rifampicina; todas as outras testadas foram reportadas como sensíveis31,32,38,58-60,62,63,87,140. Na Ásia algumas estirpes foram reportadas como resistentes65,66.

A susceptibilidade reportada às quinolonas tem sido muito variável. Todas as estirpes VRSA ocidentais revelaram ser resistentes às quinolonas testadas58,60,62,63,140. Na Ásia também foram reportadas estirpes resistentes66,95,104,105, mas também foram reportadas algumas estirpes sensíveis65,94,105.

TERAPÊUTICAS EM ESTUDO

Desde o aparecimento das primeiras estirpes VRSA que vários grupos tentaram criar novas alternativas à vancomicina para o seu tratamento. Neste contexto surgiram vários novos fármacos e novas utilizações de fármacos antigos que não alcançaram, pelo menos por enquanto, a prática clínica.

O antagonismo entre a resistência aos β-lactâmicos e a resistência à vancomicina113,134 gerou a hipótese de que tal combinação poderia ser usada na prática contra VRSA. Um estudo conduzido num modelo animal
de endocardite sugeri que estas combinações poderão ser eficazes na clínica, mas não comparou a sua eficácia com a de outros fármacos eficazes. Contudo, é possível que estas combinações sejam insuficientes para a terapêutica eficaz.

Mais recentemente, trabalhando-se nestes achados, foi desenvolvido um fármaco heterodimérico composto por um núcleo de glicopéptido e um anel de cefalosporina, chamado TD-1792. Este fármaco encontra-se actualmente em ensaios clínicos, mas aparenta ser mais eficaz que os fármacos actualmente considerados primeira linha contra VRSA. Rebiahi et al. também notaram uma interacção sinérgica entre a vancomicina e a gentamicina contra VRSA.

Mais recentemente alguns grupos começaram a explorar novos glicopéptidos como armas terapêuticas contra VRSA. Os fármacos estudados incluem uma formulação nanoconjugada da vancomicina e uma formulação de vancomicina ligada a nanopartículas de ouro, mas nestes estudos foram usadas estirpes não validadas pelos métodos usados no estudo actual. Um outro glicopéptido, Van-M-02, com um mecanismo de acção duplo que parece abranger a síntese dos intermediários lipídicos, parece ser activo contra VRSA. A sua actividade é diminuída pela presença de terminais D-ala-D-lac, mas não tanto como a da vancomicina, o que sugere um mecanismo de acção mais independente do substrato neste novo fármaco.

Também foram testadas novas formulações de quinolonas contra estas estirpes. Estas incluem uma nova formulação da nadifloxacina, a S-(−)-nadifloxacina e vários derivados da norfloxacina. Em ambos os casos se reportou uma actividade bastante superior de pelo menos algumas destas quinolonas contra VRSA em relação às quinolonas convencionais.

Alguns péptidos antimicrobianos sintéticos também revelaram actividade significativa contra VRSA. Os péptidos LTX-109 e NZ2114, demonstraram actividade comparável à dos fármacos de primeira linha. A persulcatusina também revelou ser activa contra VRSA, mas a sua actividade não foi comparada com a de outros antimicrobianos usados clinicamente contra *Staphylococcus aureus*.

Mohammad et al. reportaram a actividade bactericida de vários compostos tiazólicos contra várias estirpes de *Staphylococcus aureus*, incluindo VRSA. Foi observado sinergismo entre estes compostos e a vancomicina, tendo a CIM diminuído para a gama da susceptibilidade. A emergência de resistência, que já parece ser pouco provável, pode então ser ainda mais mitigada pela associação à vancomicina.

Davis et al. reportaram actividade antimicrobiana potente de vários compostos arilo-isonitrilo contra estirpes MRSA e VRS2 (único representante de VRSA neste estudo).

Alguns grupos reportaram a eficácia de diversos extractos de plantas contra VRSA, mas nestes estudos não foram usadas estirpes VRSA devidamente caracterizadas e com métodos de isolamento e identificação explicitos.

NOVOS ALVOS

Além dos estudos mencionados em que se pesquisa a actividade de fármacos já comercializados ou ainda em fase de ensaios mas com mecanismos de acção sobreponíveis aos já existentes, não está excluída a possibili-
dade de surgirem novas classes de antimicrobianos com acção sobre alvos ainda não abordados pelas opções actuais. Por exemplo, Hasan et al185 analisaram o proteoma de VRSA e encontraram uma proteína ligada à membrana, sem homologia com qualquer proteína humana, que poderá vir a ser um alvo terapêutico no futuro. Por outro lado, a identificação de estirpes VRSA vancomicina-dependentes e a consequente verificação da importância da D-ala-D-ala ligase para o crescimento de \textit{Staphylococcus aureus} levantou a possibilidade de atacar VRSA e outras bactérias pela actuação sobre esta enzima43. A modulação farmacológica do sistema VraTSR também poderia, em teoria, ser utilizada contra VRSA135, mas provavelmente exigiria a combinação com outros antimicrobianos.

Prevenção da Transmissão

As precauções usadas antes do conhecimento da infecção nos primeiros casos americanos eram as precauções universais de controlo da infecção. Após o isolamento de VRSA reforçaram-se essas precauções e iniciaram-se medidas acrescidas, como a colocação dos doentes em quartos individuais, ou, em doentes de ambulatório, tratamento dos doentes em áreas separadas dos outros doentes e durante a última marcação do dia. Atribuiu-se pessoal dedicado ao doente, com utilização de um novo conjunto de luvas e bata para cada interacção e máscaras com protecção ocular perante potencial de emissão de material infeccioso. Após a utilização dos equipamentos estes eram cuidadosamente limpos e desinfectados, tendo o mesmo sido feito aos quartos após a alta dos doentes. Estas precauções mantiveram-se durante o período de seguimento, que foi continuado durante pelo menos 3 semanas após uma cultura negativa sem antibioticoterapia ou se havia regeneração do local de infecção primária13.

Tendo em conta que MRSA é facilmente transmissível, é razoável assumir que as estirpes resistentes à vancomicina serão também facilmente transmissíveis25. Quando uma estirpe VRSA é identificada, e antes ainda da sua confirmação, os profissionais envolvidos no cuidado do doente e a comissão de controlo de infecção devem ser imediatamente notificados para que as medidas de controlo de infecção pertinentes sejam aplicadas prontamente22. Mesmo perante a suspeita de uma infecção por \textit{Staphylococcus aureus} não-susceptível à vancomicina é razoável iniciar precauções de contacto25. O CDC elaborou normas detalhadas para a instituição de medidas de controlo de infecção por VRSA em vários contextos clínicos. Estas normas poderão ser encontradas na Referência 22.

A descolonização é uma alternativa que visa diminuir o reservatório de VRSA e que já foi usada com sucesso nalguns doentes13,22. A decisão de iniciar terapêutica com este fim deve ser tomada em conjunto com o médico assistente e as autoridades de saúde pública. Em geral a mupirocina é o agente preferido para a erradicação da colonização nasal em surtos localizados de MRSA, mas o seu efeito é de curta duração e a recolonização é comum. Nalguns doentes também se pode recorrer a lavagens corporais com gluconato de clorohexidina. Um regime possível é a utilização de mupirocina duas vezes por dia em conjunto com lavagens corporais com clorohexidina durante 5-7 dias22.
Apesar de tudo até à data ainda não foram identificados casos de disseminação de estirpes VRSA12,13,35,59,61,62,74,79. Aparentemente as precauções de contacto aplicadas são eficazes na prevenção da transmissão de VRSA74.

Vigilância Epidemiológica

Em Portugal VRSA é considerado um microrganismo “alerta”, ou seja, que apresenta um padrão de resistência de baixa prevalência e que, por essa razão, o seu isolamento implica a implementação de medidas urgentes para a sua contenção. Estes microrganismos devem ser reportados, independentemente do tipo de amostra em que sejam isolados. Devem ser conservados e enviados, em cultura pura, ao Instituto Nacional de Saúde Doutor Ricardo Jorge, a fim de ser validado o padrão de resistência e, sempre que se justifique, estudado o respectivo mecanismo de resistência18.

Nos EUA, o CDC recomenda que todas as estirpes com CIM para a vancomicina de pelo menos 8 mg/L sejam enviadas ao CDC para confirmação da resistência. Caso seja confirmado o fenótipo VRSA, todas as estirpes VRE, MRSA e VRSA do doente devem ser guardadas para permitir a caracterização dos precursores32.

Tendo em conta a importância para a saúde pública, a detecção de VRSA deve desencadear uma investigação que inclui a investigação dos contactos, suspeite-se ou não de transmissão. Em contraste, perante o isolamento de VISA tal protocolo apenas é recomendado quando se suspeita de transmissão. O CDC elaborou um conjunto de normas detalhado para a investigação dos contactos22:

- **Desenvolver um plano para os indivíduos colonizados ou infectados.** Deve saber-se previamente quais serão os procedimentos a aplicar a esses indivíduos.
- **Identificar e classificar os contactos.** Existem definições estabelecidas para a classificação em interacção extensa, moderada ou mínima. A identificação de contactos com interacção extensa é prioritária.
- **Colher as amostras.** As amostras devem ser obtidas de múltiplos locais, tendo em conta os locais de colonização mais comuns e locais clinicamente relevantes, sempre após obtenção de consentimento informado. Contactos com interacção moderada ou mínima podem não ser testados.
- **Avaliar a eficácia das precauções de controlo da infecção.** A identificação de VRSA deve iniciar um conjunto de medidas de precaução; a adesão a estas medidas, bem como às medidas gerais de controlo da infecção, deve ser avaliada.

Mais detalhes sobre estes procedimentos poderão ser encontrados na Referência 22.

Perspectivas Futuras

Até à data as estirpes VRSA têm sido incomuns, mas vários factores suportam a possibilidade de haver muitos casos não notados ou reportados e a ocorrência de mais casos no futuro. A utilização, em vários
laboratórios, de métodos automáticos para testar a susceptibilidade aos antibióticos pode contribuir para um
subdiagnóstico destas estirpes, e o mesmo poderá ocorrer com a utilização do método de Kirby-Bauer. Por
outro lado, são reportadas muitas estirpes por todo o Mundo que depois parecem ser recebidas com algum
cecízimo, provavelmente pela escassez da caracterização de tais estirpes e da utilização de métodos
confirmatórios. Apesar de tudo é possível que pelo menos algumas destas estirpes sejam verdadeiros VRSA,
e esta possibilidade deve ser encarada com seriedade. Pode ainda haver várias estirpes isoladas que não são
reportadas, como é o caso das estirpes obtidas em “isolamentos clínicos”, que apenas chegam ao conhe-
cimento científico quando são utilizadas noutros estudos, sem qualquer caracterização (e portanto sem
qualquer garantia de serem verdadeiros VRSA). A emergência destas estirpes na ausência de pressão
selectiva e a manutenção do fenótipo após a cessação de tal pressão também são achados preocupantes.

O maior desafio no futuro pode nem ser o tratamento ou a contenção destas infecções, mas sim o
diagnóstico preciso e atempado quando uma surgi. A indutibilidade da resistência pode dificultar muito a
deteção destas estirpes, particularmente quando são estirpes LLR-VRSA, com maior probabilidade de
falsos negativos. Também é possível a emergência de estirpes VRSA durante a colonização assintomática,
mas é desconhecida a importância epidemiológica desta possibilidade.

Apesar de tudo, é possível olhar com optimismo para estas estirpes:

- São estirpes geralmente suscetíveis a vários antimicrobianos disponíveis, embora não seja de excluir o
 aparecimento de novas resistências no futuro.
- Embora seja muito provável que continuem a ocorrer casos de infecção por VRSA, pela necessidade de
 conjugação de condições muito improváveis (co-colonização por MRSA CC5 tipo-pSK41 positivo e
 VR-Enterococcus faecalis vanA-positivo e tipo-Inc18 positivo) o mais provável é que estas estirpes
 continuem a ser extremamente raras.
- As infecções por estas estirpes não parecem ser particularmente graves; apesar de parecerem ser tão
 virulentas como MRSA, estas estirpes foram notadas principalmente em doentes com várias morbi-
 lidades e a mortalidade atribuível a estas infecções parece ser rara, tendo a maior parte dos casos
 regredido com a terapêutica adequada.
- Não se verificou até à data qualquer caso de transmissão de uma destas estirpes. Cada estirpe parece ser
 única e independente das outras. O facto de nunca ter sido detectada a transmissão de uma estirpe
 VRSA suporta a transmissibilidade limitada destas estirpes, e/ou que o fenótipo é suficientemente
 instável para que seja possível para ser perdido mesmo após a transmissão.
- O aparecimento destas estirpes tem desencadeado a investigação de novos fármacos com actividade
 contra Staphylococcus aureus. Pela sua fraca actividade bactericida, fraca penetração nos tecidos e perfil
 de efeitos adversos, a perda dos glicopéptidos enquanto opção terapêutica não parece ser muito preocu-
 pante, e pode até ser algo de positivo ao fomentar o desenvolvimento de novas e melhores armas.
É muito provável que o controlo bem sucedido das estirpes MRSA acabe por dificultar a emergência de estirpes VRSA clinicamente relevantes. Com a utilização apropriada de antibióticos no meio hospitalar, eventualmente será possível que as bactérias suscetíveis, mais rápidas no seu crescimento, se sobreponham às bactérias resistentes, diminuindo a prevalência de MRSA e assim o potencial de emergência de VRSA. Em Portugal, em 2015, entrou em vigor uma nova norma da DGS visando o controlo da emergência de MRSA. Esta já foi implementada em vários serviços, mas os seus efeitos apenas serão mensuráveis no futuro. Tendo em conta o contexto em que surgem as estirpes VRSA, é razoável pensar que o controlo da emergência de VR-

Enterococcus faecalis também poderá ser uma medida eficaz na redução dos números de VRSA. Outras medidas importantes incluem a aplicação de boas práticas para prevenção de infecções nosocomiais e o tratamento correcto das doenças infecciosas. É muito importante a perseguição do diagnóstico microbiológico para minimizar a antibioticoterapia empírica prolongada.

É ainda incerto se estas estirpes prevalecerão ou não. Citando Fred Tenover, “Prever quais as estirpes resistentes que sobreviverão e se disseminarão é virtualmente impossível; prever que pelo menos algumas estirpes se disseminarão amplamente é uma certeza”. De qualquer forma, é muito provável que outros mecanismos de resistência à vancomicina venham a surgir e eventualmente a prevaler.

Conclusão

VRSA permanece um organismo extremamente raro, mesmo ao fim de 15 anos após a descrição da primeira estirpe. A sua relevância clínica é entendida com alguma controvérsia, mas parece ser relativamente unânime que estas estirpes não têm constituído um problema clínico muito significativo, uma vez que (1) são muito raras, (2) estão associadas a infecções pouco graves, com mortalidade atribuível baixa, (3) o potencial de transferência horizontal da resistência é muito baixo, (4) existem geralmente várias opções disponíveis para o seu tratamento e (5) o potencial de transmissão interpessoal parece ser relativamente limitado. Contudo, na Ásia têm sido reportados números alarmantes destas estirpes, embora seja desconhecido se pelo menos alguns destes casos não serão falsos positivos. O diagnóstico correcto e atempado parece ser actualmente o maior desafio, mas não com a aplicação de métodos validados para tais fins, e é inclusivamente possível que venham a surgir métodos rápidos para tal diagnóstico. O grande problema é a prevalência muito elevada de estirpes MRSA, e será com o controlo destas que VRSA se tornará um problema cada vez menor, pela necessidade menos comum de recorrer à vancomicina. O controlo das estirpes VRE também será importante para diminuir o potencial de emergência de estirpes VRSA. Segundo o conhecimento actual sobre as estirpes VRSA parece muito provável que estas estirpes não se tornem problemáticas; a emergência e prevalência de outras formas de resistência à vancomicina, contudo, poderá ser uma possibilidade mais preocupante. Problemas actualmente maiores que VRSA incluem as estirpes VISA e hVISA, bem como o “deslizamento da CIM”, mas ainda é possível que surjam outros mecanismos com potencial para prevaler.
Referências Bibliográficas

Ramirez M, comunicación pessoal.

and vancomycin-resistant amides and analogues against methicillin-resistant Staphylococcus aureus (NARS).

Tiwari HK e Sen MR (2006). Emergence of vancomycin resistant Staphylococcus aureus (VRSA) from a tertiary care hospital from northern part of India. BMC Infections Diseases 6:156.

Huebner NO, Dittmann K, Henck V, Wegner C e Kramer A (2016). Epidemiology of multidrug resistant bacterial organisms and Clostridium difficile in German hospitals in 2014: Results from a nationwide one-day point prevalence of 329 German hospitals. BMC Infectious Diseases 16:467.

39

Farrell DJ, Flamm RK, Salloum HS & Jones RN (2014). Activity of cefotibiprole against methicillin-resistant Staphylococcus aureus strains with reduced susceptibility to daptomycin, linezolid or vancomycin, and...

Resistência total à vancomicina em *Staphylococcus aureus* e *Staphylococcus aureus* tipo-VanA: Uma revisão de 2016

Vasco Antunes de Oliveira Tiago

ERRATA

<table>
<thead>
<tr>
<th>Na Página</th>
<th>Linha</th>
<th>Onde se lê</th>
<th>Deve ler-se</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>19</td>
<td>those not indexed</td>
<td>the original papers not indexed</td>
</tr>
<tr>
<td>10</td>
<td>31</td>
<td>duas na Pensilvânia e duas em Nova Iorque</td>
<td>duas na Pensilvânia ou Texas e duas presumivelmente em Nova Iorque ou Maryland</td>
</tr>
<tr>
<td>12</td>
<td>Legenda da Tabela 1, linha 5</td>
<td>Variante de locus único de CC5</td>
<td>Variante de locus único de ST5</td>
</tr>
<tr>
<td>13</td>
<td>Tabela 1, linha 12 (VRS10)</td>
<td>Plasmídeo enterocócico</td>
<td>Plasmídeo enterocócico, Inc18-tipo</td>
</tr>
<tr>
<td>13</td>
<td>Tabela 1, linha 20 (STM2)</td>
<td>Prototípico</td>
<td>Análogo ao prototípico, sequência parcialmente homóloga</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>reportaram a utilização de 3 estirpes VRSA clinicamente isoladas no Centro Médico de Hershey num estudo.</td>
<td>reportaram a utilização num estudo de 3 estirpes VRSA isoladas no Centro Médico de Hershey ou no Centro Médico da Universidade do Texas Sudoeste em Dallas (os autores não especificam a localização de cada estirpe).</td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>neste centro médico já tinha sido isolada uma estirpe em 2002, isto significa que foram isoladas</td>
<td>no Centro Médico de Hershey já tinha sido isolada uma estirpe em 2002, isto significa que podem ter sido isoladas</td>
</tr>
<tr>
<td>15</td>
<td>13-14</td>
<td>Embora não seja directamente divulgada, Nova Iorque é a localização mais provável.</td>
<td>Embora não sejam directamente divulgadas, Rockville (Maryland) ou Hempstead (Nova Iorque) são as localizações mais prováveis.</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>que é depois incorporado no peptidoglicano pela ligase VanA</td>
<td>que é depois acoplado a D-ala pela ligase VanA</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>precursor tetrapeptídico com terminal D-lys-D-ala</td>
<td>precursor tetrapeptídico com terminal L-lys-D-ala</td>
</tr>
<tr>
<td>25</td>
<td>28-29</td>
<td>também se encontrou um elemento Tn1546 prototípico</td>
<td>encontrou-se um elemento Tn1546 análogo ao prototípico, com sequência parcialmente homóloga</td>
</tr>
</tbody>
</table>