Accepted paper


10.1021/acsanm.8b00612
Eu-Doped AlGaN/GaN Superlattice-Based Diode Structure for Red Lighting: Excitation Mechanisms and Active Sites

N. Ben Sedrine,* J. Rodrigues,† D. Nd. Faye,‡ A. J. Neves,† E. Alves,‡ M. Bockowski,§ V. Hoffmann,∥ K. Lorenz,‡⊥ M. R. Correia,† and T. Monteiro†

Departamento de Física & I3N, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
IPFN, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Estrada Nacional 10, P-2695-066 Bobadela LRS, Portugal
Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Poland
Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Straße 4, 12489 Berlin, Germany
Instituto de Engenharia de Sistemas de Computadores—Microsystems and Nanotechnology (INESC-MN), Rua Alves Redol, 1000-029 Lisboa, Portugal

Supporting Information

ABSTRACT: In this work, we have established the effects of postgrowth annealing and Eu implantation, followed by annealing on an AlGaN/GaN superlattice-based diode structure, containing Mg-doped GaN top p-cap layers. The study is based on the combined information from different optical techniques, such as Raman, photoluminescence, and photoluminescence excitation. We have shown that the diode structure exhibits a stable crystalline quality even after annealing under high temperature and high pressure (HTHP) conditions (1400 °C in 1 GPa N₂). Furthermore, we have demonstrated that the implanted Eu ions reached the first quantum wells of the diode structure and that the postimplantation thermal annealing partly removed the implantation defects, recovering some of the as-grown luminescence and optically activating the Eu³⁺ in the diode structure. An in-depth study of the Eu³⁺ population mechanisms was realized through room temperature photoluminescence excitation. A model was built based on the different excitation bands originated from the materials present in the diode structure, demonstrating that an energy transfer between the AlGaN/GaN superlattice excitons and the Eu³⁺ ions occurs, therefore enlarging the excitation pathways for the ion’s red luminescence. In addition, Eu³⁺ luminescence was observed not only with above but also with below GaN bandgap excitation. The temperature dependent study of the ⁵D₁→⁷F₁ transitions allowed to tentatively provide the Eu³⁺ intraionic assignments of the diode structure. We have demonstrated that at least three non-equivalent active sites are created by the Eu implantation in the diode structure: Eu₁, Eu₂, and Eu–Mg defect in both configurations Eu₀ and Eu₁(Mg).

KEYWORDS: high-temperature and high-pressure annealing, europium, implantation, diode structure, Raman spectroscopy, PL, PLE

Received: April 13, 2018
Accepted: July 17, 2018
Published: July 17, 2018

© XXXX American Chemical Society

DOI: 10.1021/acsanm.8b00612
ACS Appl. Nano Mater. XXXX, XXX, XXX−XXX
have realized red-emitting LED by using in situ Eu-doped GaN active layer. For nominally undoped GaN samples implanted with Eu, thermal annealing at high temperatures was established to lead to the formation of two dominant optical centers denoted as Eu1 and Eu2,\(^{267}\) where the first center (Eu1) involves Eu\(_{\text{Ga}}\) associated with intrinsic lattice defects,\(^{280}\) while the second (Eu2) is a substitutitional Eu impurity (Eu\(_{\text{Ga}}\)). For such samples, postimplantation annealing at temperatures in the range of 1000–1450 \(^\circ\)C in high \(N_2\) pressure, a predominance of Eu2 optical center was demonstrated.\(^{28}\) Alternatively, other authors have attributed the Eu1 and Eu2 centers to complex defects involving the Eu\(^{3+}\) ion in a substitutional cation position with next-neighbors being N and Ga vacancies, respectively.\(^{5,10}\)

Furthermore, codoping GaN:RE with additional impurities was demonstrated to be a powerful technique to control Eu centers and improve the luminescence. For instance, magnesium (Mg) doping enhances the RE luminescence efficiency in GaN\(^{11,12}\), because it is expected to modify local structures around the RE ions. In this context, O’Donnell et al.\(^{13,14}\) attributed the observed photoenhancement, temperature hysteresis, and photobleaching to conformational modifications because the change of the charge state of the (Eu–Mg)-related defects in p-type GaN. The same strategy of Mg and Eu codoping in GaN was used to probe the lattice location of Mg in GaN (Mg):Eu\(^{15,16}\) by hysteresis photochromic switching between two configurations (Eu0 and Eu1(Mg)) of the same Eu–Mg defect: Eu\(_{\text{Ga}}\) in close association with Mg\(_{\text{Ga}}\) bonded to a common N atom.\(^{16}\) Wakahara et al.\(^{1}\) also investigated the effect of Mg codoping on the luminescence properties of Eu-doped GaN epitaxial films for different Mg concentrations, and demonstrated that the optimal doping of Mg in GaN:Eu led to the selective activation of site-A (\(~620.3\) nm), with respect to site-B (\(~622.3\) nm), resulting in an enhanced Eu\(^{3+}\) luminescence. As a result, the authors fabricated a LED with p-GaN/GaN:Eu (Mg) active layer/n-GaN structure using optimal Mg doping conditions (\(1\times10^{18}\) cm\(^{-3}\)) and obtained bright red emission under forward bias condition. On the other hand, unlike nitride bulk or layers, it was demonstrated that the intensity of the emission is enhanced when the RE ions are implanted in quantum structures, such as quantum wells (QWs) and superlattices (SLs),\(^{17}\) as obtained in Eu\(^{18,19}\) and erbium (Er)\(^{20}\) implanted in AlGaN/GaN SLs. Furthermore, according to Fawcett’s principle, wider bandgap semiconductors show weaker thermal quenching, thus favoring the III-nitrides among other semiconductors.\(^{21}\) Indeed, it was proven that thermal quenching of photoluminescence (PL) intensity became very small with the increase of Al content in AlGaN epitaxial layers.\(^{22}\) O’Donnell et al.\(^{23}\) have demonstrated this principle by showing that the \(T_{\text{1/2}}\) value (corresponding to the temperature at which the intensity of the luminescence is one-half of its maximum low-temperature) is as high as 400 K for GaN, but this value strongly depends on the RE related center in the III–N host. Recently, a synergy effect between the increase of III–N bandgap and the codoping was explored by Kanemoto et al.\(^{24}\) for Mg codoped AlGaN:Eu epitaxial films. It was found that Mg codoping in AlGaN:Eu contributes to increase the PL integrated intensity and to improve the PL efficiency. Mishra et al.\(^{25}\) also reported a strong enhancement of the Eu\(^{3+}\) luminescence by simultaneously codoping with silicon (Si) and Mg in Eu-implanted GaN samples. In addition to the intensity enhancement, Lee et al.\(^{26}\) showed that Mg codoping into GaN:Eu produced novel Eu-Mg luminescence centers, while the addition of silicon removed such centers and enhanced an additional one.

In this work, we deeply investigate Eu implantation followed by high-temperature high-pressure (HTHP) annealing in order to study the effect of post-growth HTHP annealing of the as-grown diode structure and the influence of Eu implantation followed by HTHP annealing. The Eu\(^{3+}\) population mechanisms were established and the Eu\(^{3+}\) emission lines and their temperature dependence were analyzed in detail.

### METHODS

The diode structure (Figure S1) was grown by MOVPE on a thick GaN buffer layer on sapphire substrate. The n–p junction was formed by Si-doped GaN (n-type, free carrier concentration \(\sim2.5\times10^{18}\) cm\(^{-3}\)) and Mg-doped GaN (p-type, free carrier concentration \(\sim5\times10^{17}\) cm\(^{-3}\)), with nominal thicknesses of \(\sim2300\) nm and \(\sim100\) nm, respectively.\(^{23}\)

A 100-period n-type AlGaN/GaN short period superlattice (SL), with nominal thickness of \(\sim2.5\) nm for Al\(_{1-x}\)Ga\(_x\)N (nominal AlN content of \(x\sim0.14\)) and GaN layers, both Si-doped (Si concentration \(\sim1\times10^{16}\) cm\(^{-3}\)), was inserted on top of the n-GaN layer to provide carrier confinement. In addition, the high number of interfaces prevents Mg diffusion during temperature steps and therefore the shift of the p-doped region with respect to the Eu implanted region, X-ray diffraction (XRD) measurements and simulations show a good agreement of layer thicknesses and composition with the nominal structure, with well-defined SL peaks revealing a good interface quality of the SL.\(^{11}\) Ion implantation was carried out using 300 keV Eu ions at room temperature (RT), along the surface normal, and with two different fluences (\(1\times10^{14}\) and \(1\times10^{15}\) Eu cm\(^{-2}\)). Such implanted channeling conditions were found to reduce the implantation defect density and increase the ion range.\(^{24}\) The Eu-profile simulation, using the SRIM code and assuming no channeling effects, suggests that the maximum ion penetration depth is \(\sim120\) nm, indicating that only few ions actually reach the p–n junction for such implantation conditions.\(^{25}\) Postimplantation HTHP annealing was then performed for 30 min at 1400 \(^\circ\)C in 1 GPa \(N_2\), which corresponds to the optimized annealing conditions to recover the ion implantation damage in GaN and to activate rare earth ions.\(^{26}\) Indeed, Lorenz et al. and Roqan et al.\(^{27}\) established that the efficient optical activation of Eu implanted GaN films can be achieved by postimplantation annealing at high temperatures (\(>1000\) \(^\circ\)C) and ultrahigh nitrogen pressures (1 GPa).\(^{28}\)

The samples under study consist of one as-grown diode structure cleaved into four pieces: one as-grown piece kept as a reference (denoted as “as-grown”), two other pieces implanted with the different fluences and then annealed at HTHP (Eu14 for the fluence \(1\times10^{14}\) Eu cm\(^{-2}\)) and Eu15 for the fluence \(1\times10^{15}\) Eu cm\(^{-2}\)) and another as-grown piece only submitted to HTHP annealing (denoted as HTHP). From XRD analysis, we demonstrated that the HTHP annealing at 1400 \(^\circ\)C promotes an almost complete recovery of the crystal structure after Eu implantation.\(^{29}\) In this work, RT Raman spectroscopy measurements (HR800 system) were performed under 325 and 442 nm laser excitations in backscattering configuration. The Eu as-implanted samples (denoted as “as-imp”) were only analyzed by Raman spectroscopy in order to study the effects of implantation and HTHP annealing on the structural properties. Steady state PL spectroscopy as a function of 162 temperature (from 14 K to RT) was performed using a coldfinger 163 helium cryostat. The 325 nm line of a cw He–Cd laser (power 164 density \(L_d\sim0.6\) W cm\(^{-2}\)) was used as excitation source, corresponding 165 to the energy of \(\sim3.8\) eV, above the GaN and Al\(_{1-x}\)Ga\(_x\)N bandgaps. 166 The samples’ luminescence was dispersed by a SPEX 1704 monochromator (1 m, 1200 g mm\(^{-1}\)) and detected by a cooled Hamamatsu R928 photomultiplier. PL excitation (PLE) and PL spectra were 169 recorded at RT using a Fluorolog-3 Horiba Scientific modular 170 apparatus with a double additive grating scanning monochromator 171
RESULTS AND DISCUSSION

Raman Spectroscopy. It is known that Raman spectroscopy is extremely sensitive to the damage created by ion implantation and successfully used to study: the structural properties of GaN implanted with various RE ions,\textsuperscript{30} HTHP annealing of ion-implanted GaN films,\textsuperscript{31,32} as well as structural depth profile in ion implanted GaAs\textsuperscript{33} and rapid thermal annealing (RTA) impurity-enhanced interdiffusion in GaAs/AlGaAs QWs.\textsuperscript{34,35}

Moreover, in GaN and GaN-related alloys, the phonons were proved to be an efficient tool for monitoring the crystalline quality and strain state.\textsuperscript{36–38} Figure 1a shows Raman spectra of the as-implanted samples with both fluences recorded using the 325 nm excitation. It is worth mentioning that the as-grown and HTHP samples were not included since they exhibit a strong photoluminescence under the incidence of the 325 nm He–Cd laser line, which prevented the observation of the phonon modes system. Figure 1a shows that the Raman spectra of as-implanted samples exhibit: (i) the Brillouin zone (BZ) center phonon lines $E_2^1$ and $A_1$(LO), whose intensities decrease and broadenings increase with the Eu fluence and (ii) disorder-activated Raman scattering lines (\~{}300 and \~{}676 cm$^{-1}$ indicated by asterisks), as reported in refs. 30 and 39. Indeed, it is known that ion implantation increases the defect density;\textsuperscript{31,32} therefore lifting the wavevector conservation of the first order Raman scattering process, which was demonstrated to be closely related to the GaN calculated phonon density of states DOS function,\textsuperscript{40,41} in good agreement with our results. Figure 1a. Figure 1b and c show the Raman spectra (in a logarithmic scale) for both Eu as-implanted and Eu14 and Eu15 samples performed using the 325 and 442 nm laser excitations. As stated above, the Eu-profile simulation suggested a maximum ion penetration depth of \~{}120 nm,\textsuperscript{27} and according to the present diode structure, the use of the 325 nm laser excitation is expected to probe only the first \~{}70 nm composed of Mg-doped GaN. For both Eu14 and Eu15 samples, the spectra are dominated by $E_2^1$ and a broad quasi-LO phonon.

It is clearly seen that after HTHP (red curve), the first order phonon process at the BZ center becomes predominant, which is consistent with the recovery of the crystalline structure, also corroborating the XRD results in ref 27. The detection of $E_2^1$ even under GaN resonant excitation conditions, is a clear indication that the near-band-edge (NBE) emission at RT has lower intensity in the Eu14 and Eu15 samples than in the as-grown and HTHP samples. For the Mg nominal doping levels (1–5 \times 10^{17} \text{ cm}^{-3}) of the studied diode structure, the observed broadening of quasi-LO is more likely due to the superposition of $E_2^1$(LO) and $A_1$(LO),\textsuperscript{30} rather than a plasmon-phonon coupling,\textsuperscript{46} unless there are free carriers generated by implantation.

By using the 442 nm excitation, out of GaN bandgap resonance excitation conditions, the obtained Raman spectra (magenta curves) are dominated by the $E_2^1$ (\~{}569 cm$^{-1}$) and $A_1$(LO) (\~{}734 cm$^{-1}$) phonon modes of the wurtzite GaN, in agreement with the reported results in the backscattering configuration for relaxed c-plane GaN.\textsuperscript{40,44} The detection of the sapphire substrate phonon modes (shown by “S”) indicates that all the diode structure is being probed by using the 442 nm excitation wavelength, hindering the identification of the signal from the individual layers. Accordingly, a higher contribution from the GaN layers underneath the AlGaN/GaN SL is expected.

Photoluminescence. Figure 2 presents 14 K (a) and RT (b) PL spectra of the studied samples, obtained using the 325 nm laser line excitation. The observed PL intensity modulation is related to Fabry–Perot optical interference because of the refractive index contrast of the different layers within the diode structure. Such fringes prove that the interfaces between the constituent layers are smooth and uniform not only for the as-grown sample, but also for the Eu-implanted samples, indicating that Eu implantation/HTHP annealing did not significantly affect the interface properties of the diode structure. In Figure 2a, the PL spectrum corresponding to the as-grown sample (black line) exhibits GaN NBE emission consisting of three sharp lines, as well as the donor–acceptor pair (DAP) recombinations and their phonon replicas, a blue luminescence band (BL) centered at \~{}2.8 eV (\~{}445 nm), a broad yellow band (YL) at \~{}2.2 eV (\~{}560 nm) and the second order of the three sharp emission peaks. The sharp emission features can be
Figure 2. PL of the as-grown, HTHP, Eu14, and Eu15 samples obtained with 325 nm laser excitation at 14 K (a) and at 300 K (b). Inset of (a) shows a magnified 14 K PL below 370 nm.
most intense emission corresponding to the \( ^{5}D_{0} \rightarrow ^{7}F_{2} \) transition (~621 nm), are well resolved and dominate the spectrum in Figure 2a. At 14 K, we can conclude that HTHP thermal annealing reduced the implantation-induced defects, recovered some of the native luminescence and optically activated the Eu\(^{3+} \) ions. The detailed study related to the Eu\(^{3+} \) emission lines and their temperature dependences will be discussed below. Though this sample was subject to HTHP annealing, which could have led to a Mg diffusion from GaN to the AlGaN/GaN SL (as stated above for the HTHP sample), in this case the BL peak position remained unchanged, which suggests that the Eu implantation or the corresponding structural interface damage might have prevented the Mg diffusion into the AlGaN/GaN SL. For the Eu15 sample, besides the decrease of the intensity of the native luminescence, both DAP and BL emissions are seen to broaden due to a lower recovery of the lattice damage with respect to the sample Eu14.

Figure 2b indicates that PL intensity experiences a strong thermal quenching with increasing temperature (from 14 K to RT) in the UV range for all samples. For nonimplanted samples (as-grown and HTHP), only the YL persists at RT. This behavior versus temperature is commonly observed in GaN-based structures.\(^{59} \) For samples Eu14 and Eu15, an emission overlap of the YL with the Eu\(^{3+} \) intraionic luminescence is observed at RT. The thermal quenching of the Eu-related luminescence is much less pronounced when compared to the NBE luminescence, indicating a lower amount of thermally induced nonradiative processes. We have found that, for sample Eu14, the relative intensity of the \( ^{5}D_{0} \rightarrow ^{7}F_{2} \) transition is strongly decreased when compared with the emission at 14K, while the intensity remains similar for the Eu15 sample, indicating a higher intraionic emission thermal stability for the sample implanted with the highest fluence.

The perceived photoexcited emission color represented by the chromaticity coordinates (Commission Internationale de l’Eclairage CIE 1931, calculated from the corresponding PL spectra) is shown in Figure 3 for different temperatures from 14 to 300 K. For the as-grown sample (squares), the emission color changes from white to yellow, while the HTHP sample (spheres) shows a stable and temperature independent yellow emission. For the Eu14 sample (triangles), the emission changes from orange-red (14 K) to yellow-orange (RT). When the Eu fluence increases up to \( 1 \times 10^{15} \text{Eu} \text{cm}^{-2} \) (stars), the color emission becomes red and almost independent of temperature, exhibiting higher thermal color stability than the Eu14 sample. We have recently reported that, unlike GaN layers, the use of \( 325 \text{ nm excitation} \) was found to be the most efficient photoexcitation for providing the perceived red emission in nitride-based diode structure.\(^{40} \)

**Photoluminescence Excitation.** It is well established that the Eu\(^{3+} \) intraionic emission possesses different sensitivities to above and below bandgap excitations, as observed in Eu-implanted GaN layers.\(^{7} \) Therefore, on the basis of the RT PL spectra in Figure 2b, a detailed study of the population mechanisms occurring at RT in the present diode structure was performed. Figure 4a–d present normalized RT PLE spectra monitored at the maximum of the YL (\( 549 \text{ nm} \)) for all samples monitored at 549 (a–d) and 621 nm (e and f). monitored at the maximum of the YL (\( 549 \text{ nm} \)) for all samples, and Figure 4e and f present normalized RT PLE spectra monitored at the \( ^{5}D_{0} \rightarrow ^{7}F_{2} \) transition (621 nm) for Eu14 and Eu15 samples. Combined excitation emission spectra (CEES) for the as-grown, HTHP, Eu14, and Eu15 samples are shown in Figure S4. To get more insight into the different features observed in the PLE spectra, the normalized experimental spectra (black dots in Figure 4a–f) were analyzed using eq 1, following a similar procedure as the one used for AlGaN/GaN MQW photocurrent spectra: \(^{71} \)

![Figure 3](image-url)  
**Figure 3.** Chromaticity coordinates (CIE 1931) for the different temperatures (14–300 K) of all samples obtained with 325 nm laser excitation.

![Figure 4](image-url)  
**Figure 4.** Experimental (black dots) and best-fit calculated using eq 1 (red solid lines) PLE normalized spectra for all the samples monitored at 549 (a–d) and 621 nm (e and f).
where the terms on the right-hand side correspond respectively to a constant $C$, a term containing five Gaussian functions, and a term representing the sigmoidal formula. The sigmoidal function was successfully used in InGaN epilayers, InGaN/GaN MQWs, and AlGaN/GaN MQWs to describe the near-bandgap absorption, where $\epsilon_s$ represents the effective bandgap and $\omega$ a parameter equivalent to the Urbach tailing energy. The quantities $C$, $A_1$, $A_2$, $A_3$, $\omega_1$, $\omega_2$, and $\omega_3$ correspond to the adjustable fitting parameters, with $A_1$ and $A_2$ being the intensities, $\epsilon_s$ and $\epsilon_f$ the energy positions, and $\omega_1$ and $\omega_2$ the broadening parameters (more details can be found in Supporting Information). The best-fit calculated curves using eq 1 are indicated by red lines in Figure 4a–f. In the energy range 3–3.9 eV, the Gaussian excitation bands indicated in Figure 4a–f were tentatively assigned to GaN bulk excitonic transition ($\epsilon_e$), SL excitonic transition ($\epsilon_s$) from the fundamental heavy-hole level to the fundamental electronic level (hh$_1$–e$_1$), SL excitonic transition ($\epsilon_f$) from the excited-light-hole level to the fundamental electronic level (hh$_2$–e$_1$), and an additional high-energy structure ($\epsilon_f$). The lines at $\epsilon_s$, $\epsilon_f$, and $\epsilon_0$ energies were assigned, for the as-grown sample, according to the theoretical calculations performed by Bulutay et al. For a well width of ~2.5 nm, these authors found that the $\epsilon_s$ and $\epsilon_f$ intensities (oscillator strength) are similar, while the one of $\epsilon_0$ is much lower. We should emphasize the fact that the SL transitions are resolved from PLE spectra, even at RT, indicating the high quality of our diode structure. For the AlGaN/GaN MQW system, interband transitions were previously resolved using low temperature PLE or partially resolved using RT photocurrent spectroscopy. It can be seen that the PLE spectrum in Figure 4b monitored at the maximum of the YL (549 nm) is only slightly affected by HTHP annealing (in comparison to as-grown sample in Figure 4a), where a slight increase of the $\epsilon_s$ intensity and a decrease in the sigmoidal function intensity are observed. After Eu-implantation with both fluorences and HTHP annealing (Figure 4c and d), the PLE spectral shape has significantly changed. More specifically, no sigmoidal term was included in the fit function, probably due to the created defects that act as nonradiative recombination centers. In addition, a noticeable increase of the fwhm of the $\epsilon_s$ transition (hh$_1$–e$_1$) is found in comparison to the one of the as-grown sample which is due to disorder effects induced by the implantation and HTHP annealing. These observations confirm once again that the Eu implanted ions have reached the AlGaN/GaN SL region and have slightly affected the SL structure. Concerning the PLE spectra monitored at the $^{5}D_0 \rightarrow ^{7}F_2$ transition (621 nm) of the Eu14 sample (Figure 4e), no significant change is observed below 3.55 eV when compared to the PLE monitored at 549 nm for the same sample, (Figure 4c). However, above 3.55 eV, an increase of the intensity of the $\epsilon_0$ and $\epsilon_f$ transitions is observed. For the highest fluence sample, Eu15, the PLE (monitored at 621 nm) shows an enhanced onset absorption below the bandgap and a blue-shifted $\epsilon_f$ feature, as seen in Figure 4f. On the one hand, the subgap absorption is known to occur in ion implanted semiconductors such as Eu-implanted GaN, indicating an excitation pathway involving defect levels or complexes associated with the implanted ion. In our case, the Eu15 sample represents the most defective material and therefore contains the largest number of states inside the bandgap, which explains the higher absorption below 3 eV when compared to the as-grown and HTHP samples. On the other hand, a higher $\epsilon_0$ energy value was needed to better describe the PLE of the Eu15 sample. It is known that, in quantum wells, the presence of impurities or implantation damage, or both, can enhance the interdiffusion responsible for the potential profile change at the interface. The effect of the interdiffusion on the electron and hole quantized states in the well was found to be an effective downshift with respect to the bottom of the bands, inducing a blue-shift of the interband transition energies as a result of the changes in confinement and composition energy. Accordingly, the observed blue-shift of the $\epsilon_f$ feature, assigned to the SL excitonic transition from the fundamental light-hole level to the fundamental electronic level (lh$_1$–e$_1$), might be due to interdiffusion effect induced by Eu implantation. Since the PLE is monitored on the most intense Eu intra-$^{4}f$ shell transitions (621 nm) in the Eu15 sample (Figure 4f), an enhanced effect of the Eu implantation and HTHP in the SL structure is expected to be observed, which could not be well resolved when the PLE is monitored at the YL maximum (549 nm) for the same sample (Figure 4d). It should be emphasized that, as observed in Figure 2a for the Eu15 sample, the YL was found to have the lowest intensity when compared to the other samples, probably because of the created defects that act as nonradiative recombination centers. Consequently, the PLE analysis demonstrates that, in addition to the GaN subgap excitation, an energy transfer between the AlGaN/GaN SL excitons and the Eu$^{3+}$ ions occurs, therefore enabling the excitation pathways for the red luminescence in these structures.

Temperature-Dependent $^{5}D_0 \rightarrow ^{7}F_2$ Transitions. It is well established that, in addition to the perturbations introduced by electrostatic interaction of the electrons in the $^{4}f$ shell and by the spin–orbit coupling, the crystal-field perturbation introduced by the host material (GaN and Al$_{x}$Ga$_{1-x}$N) destroys the spherical symmetry of the free-ion $^{7}F_J$ (Eu$^{3+}$), leading to a splitting of the $^{2S+1}L_J$ term in a number of 18 crystal-field (or Stark) levels. In the trigonal case (as for GaN and AlN), the RE ion predominantly occupies the Ga$^{3+}$ substitutional sites in the C$_{3v}$ symmetry, the $^{7}F_L$ level splits into a doublet (E) and a singlet (A) (i.e., A+$\varepsilon$), while the $^{7}F_2$ splits into two doublets E and a singlet A (i.e., A+$\varepsilon$). A lowering of symmetry results in a relaxation of the selection rules and an increase of the number of allowed transitions to 25 for a maximum of (2$J$ + 1), corresponding to 3 and 5 for the $^{7}F_1$ and $^{7}F_2$ multiplets, respectively. Furthermore, no crystal field splitting is allowed for levels with $J = 0$ (e.g., $^{7}F_0$ and $^{7}D_0$). In order to perform a detailed study of the Eu-related red luminescence from the $^{5}D_0 \rightarrow ^{7}F_J$ multiplets, the PL temperature dependence of the $^{5}D_0 \rightarrow ^{7}F_J$ transitions for both Eu implanted and annealed samples is presented. The different Eu$^{3+}$ emission lines (also summarized in Table 1) are denoted as (Q1, Q2, Q3), (R1, R2, R3), (R1–R6 in Figures S5a and b), and (R0, R0, R1) transitions for both Eu implanted and annealed samples. The different Eu$^{3+}$ emission lines (also summarized in Table 1) are denoted as (Q1, Q2, Q3), (R1–R6 in Figures S5a and b) and (P1–P9), for the $^{5}D_0 \rightarrow ^{7}F_0$, $^{5}D_0 \rightarrow ^{7}F_1$, and $^{5}D_0 \rightarrow ^{7}F_2$ transitions, respectively. Table 1 summarizes all the Eu$^{3+}$ intraionic transitions observed in the PL of our structure at 583 K.
562 At RT, the dominance of the Q1 site is clearly seen with respect to the other peaks, that the authors related to the Mg site. According to Lee et al.,12 even if Si and Mg codoping activates a particular Eu site. Indeed, this statement is in good agreement with Singh et al.,16 who recently reported the simultaneous occurrence of both site configurations in Eu-doped GaN layers, 14 K, the reported ones for Eu\(^{3+}\) in GaN layers and nanowires (NWs), Eu and Mg codoped GaN layers, w-AlN single crystals, and the corresponding assignments.8,18,12,16,25,79-85

A careful comparison of our results with these reports allowed us to tentatively provide the Eu\(^{3+}\) intragrain transition assignments of the present diode structure. Both Eu14 and Eu15 samples exhibit the same Eu\(^{3+}\) intragrain transitions (within the experimental error of 0.10 nm), with different relative intensities, except resolved transitions in the \(^5\)D\(_0\) \(\rightarrow\) \(^7\)F\(_0\) region for Eu15 sample.

From Table 1, it can be seen that different Eu emission lines are resolved depending on the sample growth and doping techniques. In the present diode structure, numerous Eu\(^{3+}\) intragrain lines are observed in the spectral range: 580–730 nm. Most of the Eu-related emission peak positions obtained for the present diode structure (such as Q1–Q3 and P1–P9) have similar values as those obtained for GaN, either by in situ doping or ion implantation, indicating that the Eu is optically active within the first 120 nm of the structure. It is important to emphasize that the Q1, Q2, and Q3 transitions are not originating from phonon-assisted transitions, for which the energy separation should be \(\sim 10.5\) meV. Accordingly, at least three different active sites are created by the Eu implantation in the present diode structure. Figure S5c shows a tentative representation (not to scale) of the observed transitions and the corresponding Eu\(^{3+}\) intraionic transitions (within the 5D\(_0\) \(\rightarrow\) 7F\(_0\) region). (c) Observed transitions and the corresponding receiving 7F\(_0\) states of the three Eu sites.

In (Eu, Mg) codoped GaN layers, only one peak (~586.8 nm) was observed in the \(^5\)D\(_0\) \(\rightarrow\) \(^7\)F\(_0\) region at 180 K, attributed to the Eu0 line. This behavior is the photochromic switch, demonstrating the structural instability of GaN(Mg) at low temperature.14,15,88 It is important to emphasize that the studied samples are subject to the same HTHP annealing conditions as the ones in ref 16, however, the simultaneous occurrence of both site configurations Eu0 and Eu1(Mg) at 14 K implies that the photochromic switch is not observed, which could be due to the lower Mg concentration or to the presence of the SL in the present diode structure. Furthermore, Table 1 suggests that the site Q2 can be associated with MS2sites in Eu-doped GaN layers, 12 only one peak (~586.8 nm) was observed in the \(^5\)D\(_0\) \(\rightarrow\) \(^7\)F\(_0\) region at 180 K, attributed to the Eu0 line. This behavior is the photochromic switch, demonstrating the structural instability of GaN(Mg) at low temperature.14,15,88 It is important to emphasize that the studied samples are subject to the same HTHP annealing conditions as the ones in ref 16, however, the simultaneous occurrence of both site configurations Eu0 and Eu1(Mg) at 14 K implies that the photochromic switch is not observed, which could be due to the lower Mg concentration or to the presence of the SL in the present diode structure. Furthermore, Table 1 suggests that the site Q2 can be associated with MS2 sites in Eu-doped GaN layers, where MS2 is known to be dominantly present in ion-implanted samples.

In (Eu, Mg) codoped GaN layers, only one peak (~586.8 nm) was observed in the \(^5\)D\(_0\) \(\rightarrow\) \(^7\)F\(_0\) region at 180 K, attributed to the Eu0 line. This behavior is the photochromic switch, demonstrating the structural instability of GaN(Mg) at low temperature.14,15,88 It is important to emphasize that the studied samples are subject to the same HTHP annealing conditions as the ones in ref 16, however, the simultaneous occurrence of both site configurations Eu0 and Eu1(Mg) at 14 K implies that the photochromic switch is not observed, which could be due to the lower Mg concentration or to the presence of the SL in the present diode structure. Furthermore, Table 1 suggests that the site Q2 can be associated with MS2 sites in Eu-doped GaN layers, where MS2 is known to be dominantly present in ion-implanted samples.

In (Eu, Mg) codoped GaN layers, only one peak (~586.8 nm) was observed in the \(^5\)D\(_0\) \(\rightarrow\) \(^7\)F\(_0\) region at 180 K, attributed to the Eu0 line. This behavior is the photochromic switch, demonstrating the structural instability of GaN(Mg) at low temperature.14,15,88 It is important to emphasize that the studied samples are subject to the same HTHP annealing conditions as the ones in ref 16, however, the simultaneous occurrence of both site configurations Eu0 and Eu1(Mg) at 14 K implies that the photochromic switch is not observed, which could be due to the lower Mg concentration or to the presence of the SL in the present diode structure. Furthermore, Table 1 suggests that the site Q2 can be associated with MS2 sites in Eu-doped GaN layers, where MS2 is known to be dominantly present in ion-implanted samples.

In (Eu, Mg) codoped GaN layers, only one peak (~586.8 nm) was observed in the \(^5\)D\(_0\) \(\rightarrow\) \(^7\)F\(_0\) region at 180 K, attributed to the Eu0 line. This behavior is the photochromic switch, demonstrating the structural instability of GaN(Mg) at low temperature.14,15,88 It is important to emphasize that the studied samples are subject to the same HTHP annealing conditions as the ones in ref 16, however, the simultaneous occurrence of both site configurations Eu0 and Eu1(Mg) at 14 K implies that the photochromic switch is not observed, which could be due to the lower Mg concentration or to the presence of the SL in the present diode structure. Furthermore, Table 1 suggests that the site Q2 can be associated with MS2 sites in Eu-doped GaN layers, where MS2 is known to be dominantly present in ion-implanted samples.

In (Eu, Mg) codoped GaN layers, only one peak (~586.8 nm) was observed in the \(^5\)D\(_0\) \(\rightarrow\) \(^7\)F\(_0\) region at 180 K, attributed to the Eu0 line. This behavior is the photochromic switch, demonstrating the structural instability of GaN(Mg) at low temperature.14,15,88 It is important to emphasize that the studied samples are subject to the same HTHP annealing conditions as the ones in ref 16, however, the simultaneous occurrence of both site configurations Eu0 and Eu1(Mg) at 14 K implies that the photochromic switch is not observed, which could be due to the lower Mg concentration or to the presence of the SL in the present diode structure. Furthermore, Table 1 suggests that the site Q2 can be associated with MS2 sites in Eu-doped GaN layers, where MS2 is known to be dominantly present in ion-implanted samples.
Table 1. Eu$^{3+}$ ($4f^2$) Intratonic Transitions Observed in the Eu Implanted Diode Structure and Corresponding Assignments $^5$D$_{0,1} \rightarrow ^7$F$_{0,1,2,3,4}$

<table>
<thead>
<tr>
<th>transitions (nm)</th>
<th>peak label</th>
<th>peak positions ±0.10 nm</th>
<th>assignment</th>
<th>assignment</th>
<th>assignment</th>
<th>assignment</th>
<th>assignment</th>
<th>assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^5$D$_0 \rightarrow ^7$F$_0$</td>
<td>Q1</td>
<td>586.90</td>
<td>586.85</td>
<td>586.9 Eu0</td>
<td>587.0 MS$_3$</td>
<td>587.2</td>
<td>586.8</td>
<td>587.95 OMVPE$_1$</td>
</tr>
<tr>
<td></td>
<td>Q2</td>
<td>588.10</td>
<td>588.05</td>
<td>587.9 MS$_3$</td>
<td>588.5 sIII</td>
<td>589.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q3</td>
<td>588.90</td>
<td>588.85</td>
<td>588.9 Eu1(Mg)</td>
<td>588.8 ManS</td>
<td>589.9</td>
<td>590.34</td>
<td>588.76 OMVPE$_1$</td>
</tr>
<tr>
<td>$^5$D$_0 \rightarrow ^7$F$_1$</td>
<td>R1</td>
<td>598.85</td>
<td>598.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>591.9</td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>600.60</td>
<td>600.60</td>
<td>600.8 Eu0/Eu1(Mg)</td>
<td>600.4</td>
<td>600.8 aIV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>602.30</td>
<td>602.25</td>
<td>602.1 Eu0/Eu1(Mg)</td>
<td>602.2</td>
<td>602.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>605.85</td>
<td>605.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>604.6</td>
</tr>
<tr>
<td></td>
<td>R5</td>
<td>607.20</td>
<td>607.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>606.1 sII</td>
</tr>
<tr>
<td></td>
<td>R6</td>
<td>607.95</td>
<td>607.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>604.35</td>
</tr>
<tr>
<td>$^5$D$_0 \rightarrow ^7$F$_2$</td>
<td>P1</td>
<td>617.45</td>
<td>617.45</td>
<td>617.2 Eu2</td>
<td>617.2 MS$_7$</td>
<td>617.6 Eu-Mg (A)$^1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>618.90</td>
<td>618.90</td>
<td>618.9 Eu0</td>
<td>618.7 Eu2</td>
<td>618.9 MS$_4$</td>
<td>618.8</td>
<td>618.8 sIII</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>619.50</td>
<td>619.40</td>
<td>619.5 Eu0</td>
<td>619.3 Eu2</td>
<td>619.6 MS$_4$</td>
<td>619.4</td>
<td>619.4</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>621.00</td>
<td>620.95</td>
<td>621.0 Eu1(Mg)</td>
<td>620.8 Eu1/Eu2</td>
<td>621.0 MS$_2$</td>
<td>620.8</td>
<td>620.8</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>621.85</td>
<td>621.80</td>
<td>621.8 Eu1(Mg)</td>
<td>621.7 Eu1/Eu2</td>
<td>621.9 MS$_4$</td>
<td>621.7</td>
<td>621.7</td>
</tr>
<tr>
<td></td>
<td>P6</td>
<td>622.70</td>
<td>622.70</td>
<td>622.7 Eu1(Mg)</td>
<td>622.5 Eu1</td>
<td>622.6 ManS</td>
<td>622.6</td>
<td>622.7</td>
</tr>
<tr>
<td></td>
<td>P7</td>
<td>632.90</td>
<td>632.75</td>
<td>632.7 MS$_4$</td>
<td>632.8</td>
<td>632.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P8</td>
<td>633.90</td>
<td>633.85</td>
<td>633.9 Eu1(Mg)</td>
<td>633.9 MS$_3$</td>
<td>633.9 site-C$^3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P9</td>
<td>634.60</td>
<td>634.50</td>
<td>634.3 ManS</td>
<td>634.1</td>
<td>634.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$^5$D$_0 \rightarrow ^7$F$_3$ | 656.1 aIV |

10$^{14}$ Eu ions·cm$^{-2}$ implanted AlGaN/GaN diode structure

10$^{15}$–10$^{14}$ Eu ions·cm$^{-2}$ implanted GaN layers

10$^{15}$–10$^{13}$ Eu ions·cm$^{-2}$ implanted GaN layers

Eu-in-situ-doped and implanted GaN samples

5 × 10$^{13}$ Eu ions·cm$^{-2}$ implanted GaN NWs

3 × 10$^{13}$ Eu ions·cm$^{-2}$ implanted GaN NWs
Table 1. continued

<table>
<thead>
<tr>
<th>Transitions (nm)</th>
<th>Peak label</th>
<th>Peak positions ±0.10 nm</th>
<th>Assignment</th>
<th>Assignment</th>
<th>Assignment</th>
<th>Assignment</th>
<th>Assignment</th>
<th>Assignment</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{3}D_{0} \rightarrow ^{7}F_{4}$</td>
<td>$^{3}D_{0}$</td>
<td>656.00</td>
<td>655.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>656.75</td>
<td>656.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$^{1}D_{1}$</td>
<td>662.00</td>
<td>662.05</td>
<td>661.8 MainS</td>
<td>662.1</td>
<td>662.1</td>
<td>662.0</td>
<td>sl</td>
<td>664.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>664.00</td>
<td>663.90</td>
<td>663.8 MainS</td>
<td>664.0</td>
<td>664.0</td>
<td>662.7</td>
<td>sl</td>
<td>665.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>665.30</td>
<td>665.20</td>
<td>665.2 MainS</td>
<td>665.2</td>
<td>665.2</td>
<td>665.2</td>
<td>sl</td>
<td>667.33</td>
</tr>
<tr>
<td>$^{3}D_{0} \rightarrow ^{7}F_{3}$</td>
<td>$^{3}D_{0}$</td>
<td>660.5</td>
<td>660.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>706.75</td>
<td>706.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>713.25</td>
<td>713.20</td>
<td>713.1 MainS</td>
<td>713.1</td>
<td>713.1</td>
<td>713.84</td>
<td>sl</td>
<td>719.71</td>
</tr>
<tr>
<td></td>
<td>$^{1}D_{1}$</td>
<td>716.70</td>
<td>716.8</td>
<td>716.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>718.25</td>
<td>718.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>722.50</td>
<td>722.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$^{5}D_{0} \rightarrow ^{7}F_{1}$</td>
<td>$^{5}D_{0}$</td>
<td>543.75</td>
<td>543.70</td>
<td>543.4 Eu1 (Mg)</td>
<td>543.5 Eu1 (Mg)</td>
<td>543.9 Eu1 (Mg)</td>
<td>544.0 Eu1 (Mg)</td>
<td>544.3 Eu1 (Mg)</td>
<td>544.7 Eu1 (Mg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>544.3</td>
<td>544.3</td>
<td>544.3</td>
<td>544.3</td>
<td>544.3</td>
<td>544.3</td>
<td>544.3</td>
<td>544.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>544.87</td>
<td>544.87</td>
<td>544.87</td>
<td>544.87</td>
<td>544.87</td>
<td>544.87</td>
<td>544.87</td>
<td>544.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>546.0</td>
<td>546.0</td>
<td>546.0</td>
<td>546.0</td>
<td>546.0</td>
<td>546.0</td>
<td>546.0</td>
<td>546.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>546.16</td>
<td>546.16</td>
<td>546.16</td>
<td>546.16</td>
<td>546.16</td>
<td>546.16</td>
<td>546.16</td>
<td>546.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>546.38</td>
<td>546.38</td>
<td>546.38</td>
<td>546.38</td>
<td>546.38</td>
<td>546.38</td>
<td>546.38</td>
<td>546.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>562.01</td>
<td>562.01</td>
<td>562.01</td>
<td>562.01</td>
<td>562.01</td>
<td>562.01</td>
<td>562.01</td>
<td>562.01</td>
</tr>
<tr>
<td>$^{3}D_{0} \rightarrow ^{7}F_{3}$</td>
<td></td>
<td>559.5 Eu1 (Mg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>560.0</td>
<td>560.0</td>
<td>560.0</td>
<td>560.0</td>
<td>560.0</td>
<td>560.0</td>
<td>560.0</td>
<td>560.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>560.4 Eu1 (Mg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>560.5 Eu1 (Mg)</td>
</tr>
</tbody>
</table>
Table 1. continued

<table>
<thead>
<tr>
<th>transitions (nm)</th>
<th>peak label</th>
<th>peak positions ±0.10 nm</th>
<th>assignment</th>
<th>assignment</th>
<th>assignment</th>
<th>assignment</th>
<th>assignment</th>
<th>assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{14} Eu ions cm^{-2} implanted AlGaN/GaN diode structure</td>
<td>561.2 Eu1 (Mg)</td>
<td>561.3 Eu1 (Mg)</td>
<td>570.75</td>
<td>570.9 Eu1 (Mg)</td>
<td>593.80</td>
<td>594.52</td>
<td>594.74</td>
<td>595.80</td>
</tr>
<tr>
<td>10^{13} Eu ions cm^{-2} implanted AlGaN/GaN diode structure</td>
<td>586.6</td>
<td>589.9</td>
<td>592.00</td>
<td>592.00</td>
<td>592.5 sl</td>
<td>593.80</td>
<td>594.52</td>
<td>594.74</td>
</tr>
<tr>
<td>10^{15}–10^{14} Eu ions cm^{-2} implanted GaN layers (Mg codoping)</td>
<td>595.80</td>
<td>595.85</td>
<td>594.70</td>
<td>594.70</td>
<td>595.80</td>
<td>596.08</td>
<td>597.15</td>
<td>597.32</td>
</tr>
<tr>
<td>10^{15}–10^{15} Eu ions cm^{-2} implanted GaN layers</td>
<td>592.90</td>
<td>592.85</td>
<td>592.90</td>
<td>592.85</td>
<td>592.90</td>
<td>592.85</td>
<td>592.90</td>
<td>592.85</td>
</tr>
<tr>
<td>Eu-in-situ-doped and implanted GaN samples ref 81, 85 (14 K)</td>
<td>563.80</td>
<td>571.80</td>
<td>571.91</td>
<td>593.50</td>
<td>599.60</td>
<td>599.92</td>
<td>599.92</td>
<td>599.92</td>
</tr>
<tr>
<td>3 x 10^{13} Eu ions cm^{-2} implanted GaN NWs</td>
<td>586.6</td>
<td>589.9</td>
<td>592.00</td>
<td>592.00</td>
<td>592.5 sl</td>
<td>593.80</td>
<td>594.52</td>
<td>594.74</td>
</tr>
<tr>
<td>3 x 10^{13} Eu ions cm^{-2} implanted GaN NWs</td>
<td>595.80</td>
<td>595.85</td>
<td>594.70</td>
<td>594.70</td>
<td>595.80</td>
<td>596.08</td>
<td>597.15</td>
<td>597.32</td>
</tr>
<tr>
<td>Eu-doped in situ AlN single crystals</td>
<td>592.90</td>
<td>592.85</td>
<td>592.90</td>
<td>592.85</td>
<td>592.90</td>
<td>592.85</td>
<td>592.90</td>
<td>592.85</td>
</tr>
<tr>
<td>Eu-doped in situ GaN layers</td>
<td>563.80</td>
<td>571.80</td>
<td>571.91</td>
<td>593.50</td>
<td>599.60</td>
<td>599.92</td>
<td>599.92</td>
<td>599.92</td>
</tr>
</tbody>
</table>

\(^{a}\)Nanowires (NWs). \(^{b}\)Ref 83. \(^{c}\)Ref 12. \(^{d}\)Ref 1. \(^{e}\)Ref 84.
Table 2. $^5D_0 \rightarrow ^7F_0$ Transitions (Top) and Relative Estimated Energy Levels (Bottom) Derived from Our PL Spectra ($\pm 1$ meV)

<table>
<thead>
<tr>
<th>site</th>
<th>$^5D_0 \rightarrow ^7F_0$</th>
<th>energy (eV) (this work)</th>
<th>energy (eV) (rel 82)</th>
<th>energy (eV) (rel 84)</th>
</tr>
</thead>
<tbody>
<tr>
<td>site 1</td>
<td>2.113</td>
<td>2.110</td>
<td>2.100</td>
<td></td>
</tr>
<tr>
<td>site 2</td>
<td>2.108</td>
<td>2.095</td>
<td>2.083</td>
<td></td>
</tr>
<tr>
<td>site 3</td>
<td>2.106</td>
<td>2.095</td>
<td>2.083</td>
<td></td>
</tr>
</tbody>
</table>

679 (Eu, Mg) codoped GaN. As stated above, in accordance with the $C_{6v}$ symmetry, the state with $J = 1$ ($^7F_1$) splits into 2 levels: a doublet (E) and a singlet (A). The observation of more than two transitions, labeled as R1−R6 in Figure S5, is an additional indication of the presence of more than one active site in the Eu implanted and annealed diode structure.

680 a$^5D_0 \rightarrow ^7F_2$ Transition. The $^3D_0 \rightarrow ^7F_2$ transition is the so-called “hypersensitive transition”, the intensity of which is much more influenced by the local symmetry of the Eu$^{3+}$ ion and the nature of the ligands than the intensities of the other electric dipole transitions. It has been pointed out that the trivalent RE ions in GaN assume a substitutional Ga site being in a relaxed $C_{3v}$ symmetry, however, other incorporation sites are also possible. The observation of fine structures in the PL spectra of the main $^3D_0 \rightarrow ^7F_2$ transition suggests a $J$-degeneracy lifting of the $^7F_2$ multiplets and lower site symmetry than $C_{3v}$. We have discussed above the possibility of at least three different sites in the present Eu-implanted and annealed diode structure. Since the Eu$^{3+}$ dopants may experience a variety of local environments (pure substitutional Ga site, Eu$^{3+}$ clustering, regions devoid of Eu$^{3+}$ substitutions, and the presence of native defects and impurities) associated with a complex fine-structure spectra for the $^3D_0 \rightarrow ^7F_2$ region (Figure 6a and b), and a higher probability of $J$-mixing, a similar approach to the one used for R4, R5, and R6 transitions (Figure S5) for assigning the different sites cannot be easily applied. However, we could assign the observed transitions to the Eu0 and Eu1(mg) defect configurations, in comparison to the different sites reported in the literature (as indicated in Table 1).

Figure 6c shows the temperature dependence of the PL intensity for the peak P1 (617.45 nm) and peaks P2 to P9, in $^1D_0 \rightarrow ^3F_2$ region for Eu15 sample.

In this work, the obtained peculiar temperature behavior of the P1 peak intensity allows to define two regions I and II for temperatures below 120 K and above 120 K, respectively. Both regions are limited by the vertical dotted line, as shown in Figure 6c. It can be clearly seen that each of the peaks P1 to P6 exhibit different quenching regimes in both regions, described by different slopes (such as the one represented in dash-dotted line for the P5 peak). According to the assignments in Table 1, P1 is described by Eu2 site, P2 and P3 are described by the Eu0 defect configuration, while P4, P5, and P6 are described by the Eu1(Mg) defect configuration. When the temperature increases up to $\sim 120$ K, the intensity of P1 increases and those of P4−P6 peaks rapidly decrease, while those of P2 and P3 decrease smoothly. This indicates that substitutional Eu$^{3+}$ impurity (Eu0) Eu2 site is favored over Eu−Mg defect at temperatures lower than $\sim 120$ K. When the temperature increases further in region II, the intensity of P1 starts to decrease and the slope of the thermal quenching of P2−P6 is lower when compared to region I.

In summary, our PL and PLE results revealed that three main nonequivalent optically activated Eu$^{3+}$ sites are favored in the diode structure under the present ion implantation and annealing conditions, which are predominantly populated through energies above GaN and Al$_{0.11}$Ga$_{0.89}$N bandgaps.
The authors declare no competing financial interest.

**CONCLUSIONS**

The effects of the HTHP annealing and europium implantation followed by HTHP annealing on the AlGaN/GaN diode structure were studied by optical techniques. We have shown that the diode structure exhibits a stable crystalline quality after HTHP annealing at 1400 °C in 1 GPa N2. The photoluminescence response was found to be only slightly affected by the heat treatment conditions in the near band edge region. After Eu implantation and HTHP annealing, the spectroscopic analysis clearly shows that the ions reached the first AlGaN/GaN quantum wells of the diode structure. We have shown that HTHP thermal annealing has removed implantation defects, recovered some of the as-grown luminescence and optically activated the Eu3+ ions. A model was built for the photoluminescence excitation response based on the different excitation bands originated from the materials present in the diode structure, indicating that an energy transfer between the AlGaN/GaN superlattice excitons and the Eu3+ ions occurs, therefore enlarging the excitation pathways for the ions’ red luminescence. In addition, Eu3+ luminescence was observed not only with above but also with below GaN bandgap excitation, corresponding to a broad excitation band overlapped with the ion excited states. The temperature-dependent study of the $^3D_0 \rightarrow ^7F_j$ transitions allowed to tentatively provide the Eu3+ intraionic assignments of the present diode structure. We have demonstrated that at least three non-equivalent active sites are created by the Eu implantation in the diode structure: Eu1, Eu2 and Eu−Mg defect in its both configurations Eu0 and Eu1(Mg).

**ACKNOWLEDGMENTS**

The authors acknowledge financial support from FEDER funds through the POR Lisboa, COMPETE 2020 Programme and National Funds through FCT—Portuguese Foundation for Science and Technology under the projects UID/CTM/00025/2013, POCI-01-0145-FEDER-028011, and LISBOA-01-0145-FEDER-029666.

**REFERENCES**


**Eu-doped AlGaN/GaN superlattice-based diode structure for red lighting:**

*Excitation mechanisms and active sites*

N. Ben Sedrine¹, J. Rodrigues¹, D. Nd. Faye², A. J. Neves¹, E. Alves², M. Bockowski³, V. Hoffmann⁴, M. Weyers⁴, K. Lorenz²,⁵, M. R. Correia¹, and T. Monteiro¹

¹Departamento de Física e I3N, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

²IPFN, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Estrada Nacional 10, P-2695-066 Bobadela LRS, Portugal

³Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Poland

⁴Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Straße 4, 12489 Berlin, Germany

⁵Instituto de Engenharia de Sistemas de Computadores - Microsystems and Nanotechnology (INESC-MN), Rua Alves Redol, 1000-029 Lisboa, Portugal

*Correspondence to nbensedrine@ua.pt

* Schematic diode structure

![Schematic diode structure](image)

**Figure S1:** Schematic diode structure and estimated Eu implanted penetration depth from the surface (red curve).
* Temperature and excitation power PL dependences of as-grown diode structure:

**Figure S2:** 14 K PL excitation power dependence of the as-grown diode structure obtained with 325 nm laser excitation.

**Figure S3:** PL temperature dependence of the as-grown diode structure obtained with 325 nm laser excitation.
* PLE fitting procedure:

The PLE spectra of the as-grown sample were first fitted using eq. 1, and then the obtained best-fit parameters were used as input initial values for the rest of the samples. Due to the high number of parameters, we first assumed that no change of the energy positions occurred after Eu implantation and HTHP annealing with respect to the as-grown sample. In particular, the effective bandgap $\varepsilon_s$ was kept constant for all the samples. In order to improve the quality of the fit, the energy positions were allowed to vary in a second step of the fitting procedure. Unlike the Lorentzian function, the Gaussian function corresponding to an inhomogeneous broadening is found to best describe the different transitions in our PLE experimental data. In Fig. 4 (f), the energy values used in the fitting procedure are similar to the ones used for the other samples, but a higher $\varepsilon_3$ energy value was needed to better describe the PLE of the Eu15 sample.

* Combined excitation emission spectra (CEES):

CEES spectra of the as-grown, HTHP, Eu14 and Eu15 samples were acquired at RT under the same experimental conditions and represented for the same intensity scale (Figure S4). CEE spectroscopy consists of measuring the emission spectrum for each excitation wavelength (from 320 to 420 nm). Noticeable changes could be observed in Figure S4: for the as-grown sample, the YL can be observed by pumping in the wavelength range 320-370 nm, while after HTHP annealing, the same emission can be observed by pumping in a broader wavelength range: 320-380 nm. After Eu implantation/HTHP annealing, the YL can be observed by pumping using a narrower wavelength range which is decreasing by increasing the Eu fluence; from 340 to 380 nm for the Eu14 sample, and from 345 to 375 nm for the Eu15 sample. Regarding the Eu-related sharp luminescence lines observed in the red spectral region at ~621 nm, they can be identified by pumping both samples with above and below GaN bandgap excitation energy. It is interesting to notice that the Eu$^{3+}$ emission can be selectively pumped by using below GaN bandgap excitation energies through the broad excitation band tail (seen in Fig. 4 (f)).
Figure S4: RT CEES spectra of the as-grown, HTHP, Eu14 and Eu15 samples.
* Temperature dependence of $^5D_0 \rightarrow ^7F_1$

We have followed a similar procedure as the one used by Peng et al.\textsuperscript{1} based on the fact that the spacing of the $^5D_J$ and $^7F_J$ levels remains the same from site to site and that only the $^5D_J \rightarrow ^7F_J$ transitions exhibit a measurable, constant, site-dependent energy shift $\Delta E$ with respect to the highest energy transition (Q1). Such procedure was confirmed by the same authors using time-resolved PL.\textsuperscript{1} The obtained energy spacing is of 5 and 7 meV for the Q2 and Q3 transitions, respectively, as indicated in Fig. 5 (c) and Table 2. The site-dependent energy shifts $\Delta E$ in R4, R5 and R6 transitions were found to be: 4.2 and 7 meV, respectively, with respect to the R4 transition. In addition, the temperature dependence of these peaks clearly follows a similar behavior as the one of Q1, Q2 and Q3 transitions. Therefore, it is possible to correlate the sites involved in the R4, R5 and R6 transitions to the same ones involved in the Q1, Q2 and Q3 transitions, respectively. Since the R1, R2 and R3 peaks are broader and could be influenced by $J$-mixing, as reported for $^5D_0 \rightarrow ^7F_1$ transition by K. Binnemans\textsuperscript{2}, a similar approach is less straightforward. Indeed, the sites R2 and R3 correspond to the Eu0 and Eu1(Mg) defect configurations obtained by O’Donnell et al.\textsuperscript{3,4} in Eu-implanted and annealed Mg-doped GaN layers, corresponding to near-axial sites\textsuperscript{3,4}.

![Figure S5](image-url): High-resolution temperature dependence PL for the Eu14 (a) and Eu15 (b) samples around the $^5D_0 \rightarrow ^7F_1$ region.
*Comparison of Eu14 and Eu15 samples around the $^5D_0 \rightarrow {}^7F_0$ transition:

A comparison of the normalized PL intensity, around the $^5D_0 \rightarrow {}^7F_0$ transition, is analyzed for both Eu implanted and annealed samples, at RT (a) and 14 K (b) (Figure S6). It is known that for continuous wave excitation, the relative strength of the main peaks may be taken as a rough indication of the relative concentration of Eu$^{3+}$ dopants at each site. According to Fleischman et al. and O’Donnell et al., above bandgap excitation renders a dominant emission from the main site, and the minority sites MS 3, 4, and 5 (related to deep defect traps), but also contributions from other minority sites (related to shallow traps) can be seen. We found that for such above bandgap excitation, the Q1 site has a significantly higher excitation efficiency compared to the Q2 site for Eu15 sample, both at low and room temperature.

![Figure S6](image-url): Normalized high-resolution PL at 14 K (a) and at RT (b), around the $^5D_0 \rightarrow {}^7F_0$ region, for the Eu14 and Eu15 samples.
REFERENCES


